Enteroviruses consist of a large group of pathogenic viruses, poliovirus being the notorious member. For the last several decades, all the attention and resources were directed towards control and eradication of poliomyelitis in India. There is very little research on non-polio enteroviruses (NPEVs), the cousins of poliovirus, which are associated with a wide range of diseases, especially in infants and young children. We have established an active research group on NPEVs during the last six years and showed that about 35% of non-polio acute flaccid paralysis (NP-AFP) children were positive for NPEV infections, and detected 66 serotypes in NP-AFP children, EV71 being more frequently detected followed by Echovirus 13 and CVB5. Long-term comparative epidemiological studies on NPEVs and rotavirus in acute diarrhoea revealed for the first time, that, NPEV association is as significant as that of rotavirus. A surprising observation was the contrasting seasonal prevalence between enterovirus- and rotavirus-associated diarrhoea, the former predominating in non-winter months and the latter occurring primarily in the winter season. NPEVs were associated with epidemics-like outbreaks during which they were detected in up to 50% children with acute diarrhoea. In recent years, enterovirus has been identified to be associated with acute encephalitis cases in Uttar Pradesh. HFMD outbreaks have been reported in recent years, including a major outbreak in Bangalore in 2013. Since, no studies exist in India on the biology of EVs, including HFMD, we have recently initiated work on this emerging disease. Our studies uncover an urgent need for detailed studies on these “so far” neglected and emerging viruses for effective child health management in the country.

Key Words: Enterovirus; Poliovirus; Coxsackievirus; Echovirus; Diarrhoea; Hand-foot-and-Mouth Disease; Acute Flaccid Paralysis; Rotavirus

Introduction

The family Picornaviridae currently consists of 15 genera, being expanded continuously, of which the genus enterovirus represents the largest, containing about 200 serotypes (Picornavirus Home 2014). Enterovirus genus contains at least 10 species, the major human pathogenic species being; human enterovirus A-D, and human rhinovirus A-C, representing Coxsackievirus A and B (CVA and CVB), Echovirus (E), Poliovirus, relatively newer enteroviruses (EV) and rhinovirus (Picornavirus Home 2014). Human enteroviruses are common and are associated with a wide spectrum of diseases, infecting more than a billion people worldwide each year. Majority of the enterovirus infections are considered to be asymptomatic, with less than 1% of them resulting in severe disease leading to high mortality, especially in infants and young children (Pallansch and Roos, 2007). The spectrum of diseases associated with enterovirus infections in humans include; acute flaccid paralysis (AFP), aseptic meningitis, acute encephalitis, type-1-diabetes, uveitis, hand, foot and mouth disease (HFMD),
diarrhoea, brainstem disease, herpangina, exanthema, pleurodynia, cardiomyopathy, coagulopathy, atherosclerotic arterial disease, multi-system hemorrhagic disease, sudden deafness, fatal illness with pulmonary hypertension in neonates, transverse myelitis, aplastic anemia etc. (Pallansch and Roos, 2007; Chen and Shih, 2011; Avellon et al., 2003; De et al., 2011; Lewthwaite et al., 2010; el-Sageyer et al., 1998; Hinkkanen 2003; Lashkevich et al., 2004; Lee et al., 2009; Lin et al., 2003; Moldin 1980; Moldin, 1986; Mostoufizadeh et al., 1983; Ooi et al., 2010; Ortner et al., 2009; Rao et al., 2012; Rao et al., 2013; Reyes et al., 1983; Soloman and Willson 2003; Lukashev et al., 2003; Centres for Disease Control and Prevention 2003).

Enterovirus genome consists of 7.4-7.5 kb-long single-stranded positive-sense RNA, which is covalently linked to the viral polypeptide 3B, referred to as VPg, at the 5’ end, polyadenylated at the 3’ end, and contains a long Open Reading Frame (ORF), encoding a single polyprotein. Upon infection, the genomic RNA directly serves as template for the synthesis of the polyprotein, which is subsequently cleaved into four structural and seven non-structural proteins including VPg. Two proteases 2A and 3C, encoded by the viral genome, cleave the polyprotein into individual polypeptides (Fig. 1). The four structural proteins VP1-VP4 form the viral capsid, VP1 being the major capsid protein and serotype-specifying antigen. Majority of the studies on enteroviruses were focussed on poliovirus because of its association with severe lifelong paralytic disease in infants and children. In this review, I refer all enteroviruses, other than poliovirus as non-polio enteroviruses (NPEVs).

India has made a remarkable progress in eradication of wild poliovirus transmission, and very recently, it has been declared a polio-free nation. In spite of the success of polio eradication, an alarmingly large number of non-polio-AFP (NP-AFP) cases are being reported annually, the number increasing each year (Fig. 2A) (Rao et al., 2012). Though NPEVs are a major cause of AFP, detailed knowledge is lacking on the spectrum of serotypes associated with NP-AFP and other enteroviral diseases in India. Further, though enteroviruses are common, and majority of them are transmitted through fecal-oral route and first replicate in the cells of intestinal tissues prior to affecting the target organs, their role in diarrhoea has neither been studied in detail nor established. Hence majority of the epidemiological studies on diarrhoea failed to include NPEVs in their investigations. Further, the causative agents in about 30-40% of diarrheal cases are yet to be identified.

---

**Fig. 1:** Structural organization of enterovirus genomic RNA, its encoded proteins and their functions.
Although enteroviruses are associated with many diseases in humans, the actual incidence of their infections in children worldwide is yet to be determined. Research on these viruses—clinical, epidemiological, fundamental and translational—is almost lacking in the country. The major effort in this country, supported by World Health Organization (WHO), during the last three decades has been eradication of wild poliovirus transmission. We have initiated studies on NPEVs six years ago to understand their association with NP-AFP, acute diarrhoea and persistent diarrhoea, the spectrum of their antigenic diversity associated with these diseases, and molecular mechanisms underlying enterovirus pathogenesis. During 2013, a major outbreak of HFMD occurred in Bangalore for the first time, several thousand children having been affected (Times of India, 2013). But we do not have any research activity on these important pathogenic viruses in the country. To understand the antigenic diversity of the NPEVs associated with HFMD and vaccine development, we have recently initiated work on the pathogens associated with the disease.

Our studies revealed for the first time, that, NPEVs association with acute diarrhoea is as significant as rotavirus. This review summarises the results of our long-term studies on NPEVs, their association with NP-AFP and acute diarrhoea and their genetic diversity compared to the strains isolated in other countries.

Non-Polio Enteroviruses in NP-AFP

Background

Acute flaccid paralysis constitutes sudden onset of weakness and floppiness in any part of the body of a child less than 15 years of age, or paralysis in any person with suspected poliovirus infection (Field Guide, 2005). It is a complex and broad clinical syndrome and may be associated with a wide range of microbial and non-microbial agents and immunological processes. To maximize the chances of detection of every suspected case of poliomyelitis, the Global Poliomyelitis Eradication Initiative (GPEI), in 2005, expanded the case definition of AFP to include all possible causes of non-polio AFP (NP-AFP), including Guillain-Barre syndrome, transverse myelitis, traumatic neuritis and ambiguous cases (Field Guide, 2005). With the launch of GPEI in 1988 for effective vaccination, surveillance and monitoring of wild poliovirus transmission, the number of wild polio AFP cases remarkably declined from about 350,000 to 974 globally in 2010 (Centres for Disease Control and Prevention, 2010). With the introduction of effective polio vaccination programmes in India, poliomyelitis cases came down dramatically from about 35,000 cases each during 1994 and 1995 to 42 in 2010 (Centres for Disease Control and Prevention, 2010; Global Polio Eradication Initiative [GPEI] 2011; National Polio Surveillance Project [NPSP] 2014). South East Asian Region (SEAR) has been declared polio-free in March 2014, India being the last country becoming polio-free amongst the SEAR group of countries.

Concomitant with the decline in wild poliovirus transmission, a steady and steep increase in the number of NP-AFP cases from about 8000-9700 during the period 1998-2003 to 55000 to >60000 cases from 2010 to date (Global Polio Eradication Initiative 2011; National Polio Surveillance Project 2014) was observed. This large increase in NP-AFP cases, representing AFP cases caused by agents other than poliovirus, probably reflects the efficient implementation of the expanded definition of AFP, and use of highly sensitive detection and surveillance methods by NPSP in India from 2005 onwards, in comparison to other polio-endemic countries Afghanistan, Nigeria and Pakistan. The annualized AFP rate also remarkably increased from about 1.5-2.0 per 100,000 children during 1998-2003 to 12.0-16.0 from 2004 onwards (Fig. 2B) (Global Polio Eradication Initiative 2011).

In spite of the alarming incidence of NP-AFP in the country, prior to our studies, there are no detailed studies to understand the causes of NP-AFP in India. A few studies in India and Pakistan have identified about 6-12 serotypes in AFP samples, using methods that have limited scope in identifying the
large repertoire of NPEV serotypes. Although NPEVs are known to be associated with NP-AFP (Ortner et al., 2009; Persu et al., 2009; Bingjun et al., 2008), detailed knowledge on antigenic diversity of these viruses in India is still lacking. In order to understand the spectrum of NPEV serotypes associated with NP-AFP, we have developed a relatively simple RT-PCR protocol using just a pair of degenerate primers, which could amplify VP1 gene from a large number of cell culture-positive isolates, as well as, clinical samples and, were better than the multiple sets of primers used in previous studies in other countries (Oberste et al., 2000). However, some coxsackievirus A and EV71 isolates could not be amplified efficiently with these primers, and EV71 strains were amplified using serotype-specific primers (Rao et al., 2012).

**Extreme Antigenic Diversity of NPEVs Associated with NP-AFP**

Of 2786 stool specimens from independent AFP cases, collected from the previously polio-endemic state of Uttar Pradesh and two polio-free southern states of Karnataka and Kerala, 823 (~30%) were positive for NPEV growth in Rhabdomyosarcoma cells. However, the VP1 gene from only about 70% of the isolates could be amplified using our primers. The non-typeable isolates also failed to be amplified by primers used in other studies (Oberste et al., 2000), suggesting genetic diversity among Indian NPEVs. It may be noted, that due to lack of sequence data from Indian NPEVs, the primers for RT-PCR were designed based on sequences of prototype strains isolated in other countries. We have also examined 780 stool samples from apparently healthy children, which showed about 3% of the samples to be positive for NPEVs. Interestingly, while only about 0.9% of the samples from healthy children collected in winter months were positive for NPEVs, about 5.0% of the samples collected in other seasons were NPEV positive (Rao et al., 2012).

Indian NPEVs in NP-AFP patients exhibited extreme antigenic diversity. We have identified 66 serotypes, by far, the largest number of types identified in a single epidemiological study on NP-AFP (Fig. 3). A few studies in India and Pakistan identified only 6-12 serotypes (Dhole et al., 2009; Saeed et al., 2007). Among the 66 serotypes, nine serotypes were more prevalent than others, with EV71 (8.4%) being more frequently detected followed by E13 (7.1%), CVB5 (5.0%) and E6, E7, E11, E14, E19 and E33, representing 3.3%-4.5% of the isolates. Only 15 serotypes CVA4, CVB2, CVB4, E6, E7, E13, E14, E17, E19, E25, E30, E33, EV71, EV75 and EV80 were detected in all the three states. Forty-eight serotypes, including CVB5, were not detected in Kerala, reflecting the relatively small number of samples available from that state. Some CVA strains poorly replicate or do not at all replicate in RD cells as evident from the observation that 4 stool samples negative for NPEV in RD cells were positive for CVA4 and CVA8 by RT-PCR. Following our report, a recent study also reported similar number of serotypes from Western part of India (Laxmivandana et al., 2013). A recent study also observed genetic diversity in echovirus 13 strains in India (Mann et al., 2013).
Among the NP-AFP patients, mixed infections involving more than one serotype were observed in 41 cases, of which; CVB4, CVB5, E6, EV69 and EV71 accounted for 12.2%, 12.2%, 14.6%, 17.1% and 31.7%, respectively (Rao et al., 2012).

The most significant observation was that, EV71 was the single most prevalent serotype detected among NP-AFP patients, accounting for about 8.5% of the characterized isolates. Interestingly, EV71 appears to have spread from Kerala to Karnataka during 2008 and 2009, prior to which it was detected only in Kerala. Of note, about 26.5% of EV71 detections involved mixed infections (Rao et al., 2012). This observation is of great significance since EV71 is considered to be the most pathogenic enterovirus next to poliovirus, and is associated with severe poliomyelitis-like syndrome, brainstem disease, and HFMD (De et al., 2011; Ooi et al., 2010; Wang et al., 2004; Wu et al., 2010).

Non-Polio Enteroviruses in Acute Diarrhoea

Diarrhoeal diseases are still a major cause of morbidity and mortality in infants, young children and the elderly, and represent the third most frequent cause of death in children <5 years of age, primarily in developing countries, accounting for about 1.5-2.5 million deaths annually worldwide (Parashar et al., 2003a; World Health Report 2004; O’Ryan et al., 2005). Every child suffers at least one episode of diarrhoea during the first few years of life. Although several infectious agents, viral, bacterial, protozoan, and non-infectious agents are associated with diarrhoea, about 40% of diarrhoeal cases are considered to be of unknown etiology (Denno et al., 2007; Greniger et al., 2009; Holtz et al., 2008; Holtz et al., 2009).

Among viral agents, rotavirus, astrovirus, calicivirus and adenovirus are associated with significant burden of the disease (Clark and McKendrick, 2004; Dennehy, 2005; Parashar et al., 2003b; Aijaz et al., 1996), rotavirus (RV) accounting for about 20-50% of the diarrheal cases in winter months and >450,000 deaths annually (Parashar et al., 2003b). In a few diarrheal patients, bocavirus, torovirus and picobirnavirus have been reported (Jamieson et al., 1998; Jin et al., 2011; Gallimore et al., 1995). A few picornaviruses including enteroviruses have been reported from a small number of sporadic diarrhoeal cases and as part of a few small-scale epidemiological studies (Harada et al., 2009; Harvala and Simmonds, 2009; Holtz et al., 2008, 2009; Nyangao et al., 2006; Kapoor et al., 2008; Patel et al., 1985; Phan et al., 2005; Patil et al., 2009; Yamashita et al., 1993; Rai et al., 2007; Scarcella et al., 2009, Silva et al., 2008), but their association with diarrhoea has not been seriously considered due
to lack of detailed investigations. Further, a great majority of epidemiological studies failed to include enterovirus in the investigations. In order to conclusively demonstrate the association of enteroviruses with acute diarrhoea, we have conducted a 5-year long-term comparative molecular epidemiological investigation on rotavirus and enterovirus infections in diarrhoeic children, aged between zero and 9 years, reporting to paediatricians in Bangalore.

Surveillance of NPEV infections in India are extremely challenging, since every child undergoes polio vaccination 6-8 times during the first two years of life, resulting in many children often excreting the poliovirus vaccine strains. Several children receiving oral polio vaccine also develop diarrhoea. RT-PCR and sequence analysis of the VP1 gene was employed to distinguish poliovirus vaccine-associated diarrhoeal cases from NPEV-associated cases, and the polio vaccine-associated diarrhoeal cases were excluded from NPEV-associated diarrhoeal cases.

Comparative analysis of enterovirus and rotavirus infections from 2008 for five years revealed several surprising results. Of 2330 diarrheic samples analyzed during the five-year period from 2008-2012, the percent positivity for enterovirus ranged between 9.45% and 19.47% and that of rotavirus was between 8.1% and 21.06% (Fig. 4). While 16.31% of total diarrheal samples were NPEV-positive in RD cells, additional 2.7% of the RD-negative samples became positive by RT-PCR, which were mostly CVAs. Thus on the average, while about 19% of acute diarrhoea samples (including 2.7% cell culture-negative but CVA-positive samples) were positive for NPEVs, 13.8% were positive for RV. About 1.8% of diarrhoeal children were positive for Oral Polio Vaccine (OPV) strains. Further, approximately, 6% of 1700 specimens from a healthy follow-up cohort of children aged 0-9 years were also positive for NPEVs. Co-infection with EV and RV was observed in 0.64% of the diarrhoea samples. Examination of 300 samples each from diarrhoeic and healthy children revealed that 21% and 9% of the NPEV-negative samples, respectively, were positive for diarrhoeagenic E. coli. However, only 4% of NPEV-positive diarrhoea samples were positive for diarrhoeagenic E. coli (Rao et al., 2013).

Among children aged below three years, the average incidence of NPEV-associated diarrhoea ranged between 14% and 16% and that in children between three and nine years was between 21 and 27% during the five year period (Fig. 5). Although the number of children above three years having diarrhoea is significantly less than those below three years, the likelihood of NPEV infections resulting in diarrhoea appears to increase by 35%-70% in older children between three and nine years (Rao et al., 2013).

Contrasting Seasonal Predominance of EV And RV Diarrheal Infections

A surprising finding of great clinical significance emerging from the long-term study on comparative
acute diarrheal infections associated with EV and RV is the contrasting seasonal prevalence of the disease associated with the two agents. Month-wise analysis of the number of EV- and RV-associated diarrhoeal cases showed that, while RV-associated diarrhoea predominantly occurred in winter months (November to March), EV-associated diarrhoea was prevalent during other seasons spanning April to October (Fig. 6). While the frequency of RV diarrhoeal cases during winter months ranged between 8.0% and 57% (average 29%), NPEV infections ranged between 0% and 10%. By contrast, NPEV-associated acute diarrhoeal cases during April to October accounted for 14% to 50% (average 24%) of the diarrhoeal cases and that due to RV ranged between 0% and 9%. Seasonal prevalence of NPEV infections was also observed in healthy children, being 0% to 3% during winter months and 1% to 9% in other months (Rao et al., 2013). Of note, majority of NPEV infections (~60%) occurred in children <1 year of age (Table 1), similar to that observed for rotavirus infections (~65%).

**EV Serotypes in Acute Diarrhoea**

Sequence analysis of NPEVs associated with acute diarrhoea revealed 37 serotypes among 242 sequenced RD-positive isolates. Echoviruses were predominantly associated with acute diarrhoea, rather than coxsackieviruses and newer enteroviruses combined together. Seven serotypes were more prevalent with the order of occurrence being E11>E30>E7>E13>E33>E1>E14. Coxsackie B viruses represented 13% of the sequenced isolates. CVAs were not frequently detected in diarrhoeal children (Fig. 7) (Rao et al., 2013). The rate of detection of different serotypes differed each year and appeared to be associated with epidemics-like outbreaks due to specific serotypes.

**Genetic Diversity of Indian Enteroviruses Associated with NP-AFP and Acute Diarrhoea**

Indian enteroviruses associated with NP-AFP (Fig. 8) and acute diarrhoea (Fig. 9) exhibited significant genetic diversity from those isolated in other countries (Rao et al., 2012; Rao et al., 2013). Phylogenetic analysis (Tamura et al., 2011) of VP1 sequences

<table>
<thead>
<tr>
<th>Table 1: Age dependent frequency of NPEV detection in children with acute diarrhoea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
</tr>
<tr>
<td>0-1y</td>
</tr>
<tr>
<td>1-2y</td>
</tr>
<tr>
<td>2-3y</td>
</tr>
<tr>
<td>3-4y</td>
</tr>
<tr>
<td>4-5y</td>
</tr>
<tr>
<td>5-6y</td>
</tr>
<tr>
<td>6-9y</td>
</tr>
</tbody>
</table>

E11>E30>E7>E13>E33>E1>E14. Coxsackie B viruses represented 13% of the sequenced isolates. CVAs were not frequently detected in diarrhoeal children (Fig. 7) (Rao et al., 2013). The rate of detection of different serotypes differed each year and appeared to be associated with epidemics-like outbreaks due to specific serotypes.
revealed that, Indian strains formed either new genogroups, and/or sub-genogroups within known genogroups. It should be noted that due to lack of sequence data on Indian enteroviruses, the primers were designed based on sequences of prototype and other strains isolated in other countries. The fact that we could not amplify the VP1 region from 15%-30% of isolates suggests possible failure of primers due to sequence diversity in Indian strains. The genetic diversity of E13 strains in India has been further corroborated recently (Maan et al., 2013).

Emerging Eneterovirus Infections, and the Need for Active Research on Enteroviruses in India

Considering the wide range of crippling and deadly diseases associated with enterovirus infections, the lack of active research on these viruses in India is of great concern. In recent years, small outbreaks of HFMD have been reported in India (Gopalakrishna et al., 2012; Kar et al., 2013; Sarma et al., 2009; Vijayaraghavan et al., 2012). A major outbreak of HFMD occurred in Bangalore in 2013, which affected not only several thousand children but also adults in the household (Times of India, 2013). Though EV71, CVA16 and CVA10 have been associated with HFMD in South East Asian countries, causing long-term crippling and neurological disorders, and significant number of deaths among children (Chen and Shih, 2011; Lee et al., 2009; Li et al., 2013; Lin et al., 2003; Ooi et al., 2010; Ortner et al., 2009), there is a dearth of knowledge in India on the nature or genetic diversity of the viruses associated with the disease. For the last few years, encephalitis in UP has claimed several lives of children. Though these cases were originally presumed to be due to Japanese encephalitis virus, they turned out to be negative for JEV. A few investigations revealed enterovirus association with these encephalitis cases (Joshi et al., 2012; Joshi et al., 2013; Sapkalk et al., 2009; Kumar et al., 2011; Kumar et al., 2012; Lewthwaite et al., 2010), but there is no consensus on the serotype/s associated with the disease. Similarly, a few epidemiological studies on aseptic meningitis and acute hemorrhagic conjunctivitis cases from different regions of the country have been reported (Gopalakrishna 2007; Kumar et al., 2013; Madhavan et al., 2000; Maitreyi et al., 1999; Satpathy et al., 1996; Shukla et al., 2010), but a detailed analysis needs to be carried out. There is an urgent need to focus our research on enteroviruses and include these neglected ubiquitous viruses in future epidemiological studies on various diseases for which definitive causes have not been established.
Fig. 8: Phylogenetic analyses of VP1 sequences of Indian EV71 and E13 strains with those of reference strains belonging to different genogroups and subgenogroups within a serotype. Multiple sequence alignments were performed using ClustalW program and phylogenetic analysis by MEGA 5 program employing pairwise comparison and maximum composite likelihood nucleotide substitution model (Tamura et al., 2011). Phylogenetic trees were constructed by UPGMA method with statistical significance of the phylogenetic analyses estimated by bootstrap analysis with 1000 pseudo-replicate data sets. A and B represent phylogenetic trees of VP1 sequences of EV71 and E13 isolates, respectively. The serotype, state and year of isolation of each strain and accession numbers of reference strains used are indicated. 1000B is an echovirus 1 strain. The VP1 gene accession numbers of 618 Indian NP-AFP isolates are HQ454497 to 454499 and JN203499 to JN204113.
Conclusions

Although enteroviruses are common and associated with a wide range of diseases in humans, especially in children, they have been neglected to be investigated in gastrointestinal diseases. In fact, very few studies on acute diarrhoea have examined enteroviruses. Due to lack of detailed studies on enterovirus association with acute diarrhoea, they...
have not been recognized as a significant cause of gastrointestinal disease. A great majority of epidemiological studies have been focussed on rotavirus, as it is considered to be the major causative agent of acute diarrhoea in infants and young children. However, all the rotavirus-centric studies are primarily focussed during winter months as rotavirus infections predominantly occur in the winter season. As enterovirus was not examined in majority of the epidemiological studies on diarrhoea, and EVs were not detected in significant numbers in winter months in comparison to rotavirus, it appears to have been presumed that EVs are not a significant cause of diarrhoea, and hence, have been neglected and not included in most epidemiological studies. Our long-term studies clearly demonstrated that EV-associated diarrhoea predominantly occurs during spring-summer-fall seasons, in contrast to rotavirus diarrhoea, which occurs primarily in winter months. Further, these studies revealed for the first time that EV-associated diarrhoea is as significant, or more significant, as rotavirus diarrhoea. Based on severe diseases such as poliomyelitis, aseptic meningitis, etc., it was considered that less than 1.0% of enterovirus infections are associated with disease in humans. Our results on the role of NPEVs in acute diarrhoea alone reveal that enteroviruses are associated with approximately 20% of the disease. Our studies, for the first time, identified NPEVs as a major cause of acute diarrhoea in children and suggested that, echoviruses, representing a major proportion of EVs associated with diarrhoea, as well as NP-AFP, should no longer be considered as orphan viruses.

Epidemiological survey of NPEV infections in children (in USA) from 1970-2005 revealed that about 44% of infections occurred in children <1 year of age and summer-fall seasonality of enterovirus infections (Khetsuriani et al., 2006a, 2006b). Though our results are in concurrence with the reported observations, NPEV infections in diarrhoeic children below one year of age are significantly higher in India amounting to 60% of NPEV infections, among children aged 0-9 years (Rao et al., 2013). While, 80% of EV-associated diarrhoeal infections occurred in children <2 years of age, the number of EV-associated diarrhoeal cases as well as total number of diarrhoeal cases steeply decreased with age (Fig. 5 and Table 1). About 65% of rotaviral infections also occurred in children aged <1 year. Our studies further revealed that while majority of EV infections during the first year are apparently asymptomatic, the likelihood of, or percent of children becoming positive for NPEV increased by about 2-fold among older children suffering from acute diarrhoea (Rao et al., 2013). Though the summer-fall seasonality of EV infections is known, our novel observation is the contrasting seasonality between rotavirus diarrhoea and enterovirus diarrhoea, which has never been described prior to our studies. The serotypes identified in Indian children are similar to those reported in other studies, but our studies could identify more number of serotypes. It is yet to be understood how the serotype prevalence could differ with time and season.

As with rotavirus-associated infections, no mortality in children with EV infections during our study was observed since the subjects are from urban area, and have access to healthcare facilities. Majority of the infantile diarrhoeal deaths occur in rural and tribal areas due to limited access to healthcare facilities in contrast to urban settings. We have not examined CSF samples in any of the subjects, because such procedures are required only for infections of brain and central nervous system causing aseptic meningitis (Shukla et al., 2013), acute encephalitis (Kumar et al., 2011; Kumar et al., 2012), brainstem disease (Xing et al., 2014) etc. No serious neurological complications or HFMD have been observed in the diarrhoeal children, but about 20% of the subjects had either common cold, non-febrile illness or respiratory illness, suggesting that, EV infections are also associated with other symptoms along with diarrhoea. The symptoms of enterovirus infections range from asymptomatic to mild symptoms to serious complications and death. EVs are also known to cause persistent infections in humans, lasting for several months (Martin 2004; Martin 2006; Li et al., 2013). This wide variation in the degree of disease symptoms likely reflects the significant genetic variation not only among different enterovirus serotypes, but within strains belonging to
the same serotype (Borzakian et al., 1993; Duncan et al., 1998; Ramsingh and Collins 1995; Coleman et al., 2008; Yetterberg et al., 1987; Song et al., 2012; Rao et al., 2012; Rao et al., 2013; Rao et al., 2014).

It has been estimated that about 15 million cases of EV infections occur in children in USA alone and about one billion infections worldwide each year (Lukashev et al., 2010; Pallansch and Roos 2007). Our recent two-year follow-up study revealed that every child had more than one infection during the first two years of life, with majority of the infections lasting less than a week and about 6% becoming persistent, some of them prolonging for more than three months (Rao et al., 2014). Since systematic epidemiological studies on incidence of enterovirus infections in infants and young children, ranging from birth to two years of age are lacking in both developed and developing countries, especially their role in acute and persistent diarrhoea, it is difficult to assess the total burden of enterovirus infections in the world. Further, as enteroviruses are associated with a wide range of diseases not only in children but also in adults, an integrated approach for assessment of the burden of EV infections, the diseases and the economic cost is urgently required to appreciate the total burden, and development of strategies for an effective management of child healthcare system.

In recent years, outbreaks of acute encephalitis syndrome have been frequently reported in northern India and other countries. A major proportion of these cases appear to be of non-Japanese Encephalitis Virus etiology, and enteroviruses have been implicated (Kakkar et al., 2013; Kumar et al., 2011; Kumar et al., 2012; Fowlkes et al., 2008; Sapkal et al., 2009; Joshi et al., 2012; Joshi et al., 2013; Reingold et al., 2013) and there is a need for systematic detailed study of the disease (Kakkar et al., 2013). Though epidemics of hemorrhagic conjunctivitis and hand-foot-and mouth disease associated with enterovirus infections are being reported in the news (Times of India 2013) frequently from different parts of the country, very few have been investigated (Deshpande et al., 2003; Gopalakrishna et al., 2007; Gopalakrishna et al., 2012; Maitreyi et al., 1999; Madhavan et al., 2000). HFMD has become endemic and emerged as a major child health threat/hazard in Southeast Asian countries including China, Taiwan, Thailand, Singapore, Malaysia, Cambodia and Vietnam (Christian et al., 2013; Chua et al., 2011; Lee et al., 2012; WPRO-WHO 2013; Wu et al., 2010). The close economic cooperation between India and Southeast Asian countries and the high volume of travel between the regions appear to have resulted in the establishment and spread of HFMD in India during the last 5-7 years (Rao et al., 2012). Recent emergence of EV68 as a significant cause of severe respiratory infections and polio-like illness in USA and other countries is of great concern (Centers for Disease Control and Prevention 2011, 2014; Lu et al., 2014). With the advent of HFMD in India in epidemic form in recent years, and implication of enterovirus in encephalitis in Uttar Pradesh, time has arrived that these so far neglected and unrecognized viruses are considered as the emerging threats to child health management in the country, and due importance is given for clinical, basic and translational research on these viruses to meet unforeseen challenges that might emerge in future.

A wide spectrum of acute and chronic diseases caused by EVs are a significant cause of social and economic loss. Influenza-like illness and mild forms of enterovirus infection (herpangina, exanthema) are widespread, necessitating frequent visits to clinics. Though the economic cost of mild form of enterovirus infection is not high, the sheer number of infections (10-15 million cases yearly in USA alone and >1 billion worldwide) signifies the economic burden. Outbreaks of enterovirus aseptic meningitis, non-poliio AFP and encephalitis cause significant economic burden due to hospitalization costs. EVs are also associated with 30% of sepsis-like disease in newborns, resulting in significant infant morbidity and mortality (Lukashev et al., 2010). The 20th century has witnessed enteroviruses as a major cause of pandemics of paralytic poliomyelitis, hemorrhagic conjunctivitis, and HFMD, causing severe social and economic loss. With the eradication of wild poliovirus transmission in the country, NPEVs are likely to occupy the centre stage in the category of major human pathogens associated with emerging and yet to be recognized human and animal diseases in the 21st century.
References


Borzakian S, Pelletier I, Calvez V and Colbere-Garapin F (1993) Precise missense and silent point mutations are fixed in the genomes of poliovirus mutants from persistently infected cells J Virol 67 2914-2917


Chen T-C and Shih S-R (2011) Drug discovery in enteroviral infections Infect Disord Drug Targets 11 337-345


Chua KB, and Kasri AR (2011) Hand foot and mouth disease due to enterovirus 71 in Malaysia Virol Sin 26 221-228


Deshpande JM, Naka


Duncan G, Pelletier I and Colbere-Garapin F (1998) Two amino acid substitutions in the type 3 poliovirus capsid contribute to the establishment of persistent infection in Hep-2c cells by modifying virus-receptor interactions Virolology 241 14-29


Non-Polio Enferoviruses-The Emerging Pathogens 459

...


Kar BR, Dwivedi B and Kar SK (2013) An outbreak of hand, foot and mouth disease in Bhubaneswar, Odisha. Indian Pediatr 50 139-142


Lee TC, Guo HR, Su HJ, Yang YC, Chang HL and Chen KT (2009) Diseases caused by enterovirus71 infection Pediatr Infect Dis J 28 904-910


Martin J (2006) Vaccine-derived poliovirus from long-term excretors and the end game of polio eradication Biologicals 34 117-122

Moldin JF (1986) Perinatal echovirus infection: insights from a literature review of 61 cases of serious infection and 16 outbreaks in nurseries Rev Infect Dis 8 918-926

Moldin JF (1980) Fatal echovirus disease in premature neonates Pediatrics 66 775-780


Patel JR, Daniel J and Mathan VI (1985) An epidemic of acute diarrhea in rural southern India associated with echovirus type 11 infection J HYG (Lond) 95 483-492


Times of India (2013) Hand, foot, mouth disease spreads. Times City, Bangalore, August 7


