Possible Mechanism of Antifertility Activity of 3-Chloro-1, 2-Propanediol (U-5897) on the Female Genital Tract of Rattus rattus Rufescens—A Biochemical and Histophysiologica...
epididymal spermatozoa in rats given an antifertility dose of α-chlorohydrin. Other workers have observed an inhibitory effect of α-chlorohydrin on the motility of spermatozoa in the rat (Samojlik & Chang 1970, Vickery et al. 1974). Tsunoda and Chang (1976) reported that α-chlorohydrin effects the fertilizing capacity of spermatozoa in vitro and in vivo in rat.

Literature survey revealed that almost no work has been reported on the possible luteolytic effects of α-chlorohydrin on the female reproductive system of mammals except from this laboratory (Dixit et al. 1974, 1975).

In the present investigation α-chlorohydrin is being used to confirm its luteolytic/antioestrogenic properties in intact and spayed house rats.

Materials and Methods

House rats were kept for two weeks in the laboratory before the commencement of the experiments. Vaginal smears were taken daily for at least two complete estrous cycle. The animals were given rat food (Hindustan Lever Private Ltd.) and water ad libitum. Sixty house rats with regular oestrous cycle were taken and divided into groups of ten animals each. The treatment was made as under:

Group A—animals receiving 0.2 ml distilled water each day and served as controls

Group B—α-chlorohydrin (supplied by UPJOHN Company Kalamazoo) (50 mg/body wt./animal) was injected daily for a period of 3 weeks

Group C—Ovariectomized: The ovaries were removed surgically and on day 5 of ovarietomy, each animal received the vehicle alone for a period of 15 days and served as controls for groups D, E and F

Group D—Ovariectomized + α-chlorohydrin (50 mg/kg/day) for 15 days

Group E—Ovariectomized + Oestriadiol dipropionate (Ovocyclin: CIBA Ltd., 80 μg/day) for 15 days

Group F—Ovariectomized + Oestriadiol dipropionate (80 μg/day) + α-chlorohydrin (50 mg/kg day) for 15 days

All the animals were killed by rapid decapitation 24 hr after the administration of the final dose of α-chlorohydrin. Ovaries, uterus, vagina, adrenals and preputial glands were dissected free of fat and weighed on a torsion balance. Right ovary, right uterine horn and a piece of vagina were fixed in Bouin's fluid and embedded in paraffin wax for histological studies. The left ovary, left uterine horn and remaining part of vagina and adrenal glands were immediately frozen for the estimation of total RNA, protein, sialic acid, glycogen and enzyme phosphatases by the method of Munro and Fleck (1966), Lowry et al. (1951), Warren (1959), Montogomery (1957), Fiske and Subbarow.
(1925). The measurement of the diameter of 50 corpora lutea was carried out on four sections from each ovary with camera lucida drawing at 80×; averaged and expressed in terms of means of corpora lutea diameter. The standard error of the average values was calculated. Students' 't' test was applied in comparing means.

Observations

Body weight: Administration of α-chlorohydrin in intact (Group B) and ovariectomized (Group C) animals caused a small change in body weight. Combined treatment of α-chlorohydrin and oestradiol in ovariectomized (Group F) animals brings about insignificant reduction in the body weight. However, administration of oestradiol in ovariectomized (Group E) animals resulted in an increase in the body weight.

Organ weight: The relative weights of ovaries, uterus, vagina, and preputial glands were drastically reduced after α-chlorohydrin treatment (50 mg/kg body wt/day for 21 days), when compared with control (Group A) animals. The weight of adrenal glands was not changed after α-chlorohydrin treatment.

In ovariectomy, the weight of uterus, vagina, preputial glands and adrenal glands was reduced significantly \((P<0.001) \). α-Chlorohydrin treatment (50 mg/kg b. wt/day) in ovariectomized animals brings about a further reduction in the weight of uterus, vagina and preputial glands whereas an increase in adrenal gland weight was recorded (table 1). Oestradiol dipropionate (80 μg/day for a period of 15 day) enhanced the growth of uterus vagina and adrenal glands in ovariectomized house rats (Group E) \((P<0.001) \). α-Chlorohydrin (6 mg) and oestradiol (80 μg) when given simultaneously did not cause any increase in the growth of the uterus, vagina and preputial glands. The organ weights were maintained at the level of ovariectomized Group-C animals.

Histological changes

In α-chlorohydrin-treated house rats, follicular atresia were conspicuous (figures 1 & 2). The uterine endometrium was reduced. The uterine glands were regressed and showed no secretion (figures 3 & 4).

In α-chlorohydrin-treated ovariectomized animals, the uterine changes were similar as seen in case of intact α-chlorohydrin-treated animals. In oestrogen-treated spayed animals, the uterus was enlarged and the uterine glands showed the presence of secretory material, whereas the uteri of oestrogen + α-chlorohydrin-treated animals, or (Group F) were reduced. The uterine glands were regressed.

Vagina: The vagina was lined with highly mucinous zone of cells overlying a multilayered epithelium. The epithelium consisted of five to six cell layers. After α-chlorohydrin treatment, the mucin was sloughed and there was a pronounced passage of leucocytes into the vaginal lumen (figures 5 & 6).

In oestrogen-treated ovariectomized animals. the vagina showed well-defined keratinization. The vagina of α-chlorohydrin and oestradiol dipropionate-treated animals showed sloughed mucin. The leucocytes were present in the vaginal smear.

Biochemical changes

Protein and RNA: The protein and RNA contents of ovary, uterus, vagina and preputial glands were reduced after α-chlorohydrin-treatment in comparison of control (Group-A) group animals (table 2, \(P<0.001 \)). α-Chlorohydrin treatment in spayed house rats caused a reduction in the protein and RNA contents of uterus, vagina and preputial glands. This reduction was highly significant in uterus and vagina \((P<0.001) \)
Table 1 Effects of α-chlorohydrin administration on the body weight and weights of ovary, uterus, vagina, adrenal and preputial glands of house rats (Animals examined=10)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Initial body wt. (g)</th>
<th>Final body wt. (g)</th>
<th>Ovary</th>
<th>Uterus</th>
<th>Vagina</th>
<th>Preputials</th>
<th>Adrenals</th>
<th>Corpora lutea diam. (in μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (G-A)</td>
<td>127±8</td>
<td>125±2</td>
<td>35.9±6.5</td>
<td>151.3±6.8</td>
<td>147±9.5</td>
<td>201±37</td>
<td>62±1.53</td>
<td>0.608±0.015</td>
</tr>
<tr>
<td>α-Chlorohydrin (G-B) (150 mg)</td>
<td>114±5</td>
<td>112±1</td>
<td>12.7±0.8*</td>
<td>79±20.8*</td>
<td>87.5±2.8*</td>
<td>90±15*</td>
<td>78±4.3*</td>
<td>0.285±0.025*</td>
</tr>
<tr>
<td>Ovariectomy (G-C)</td>
<td>119±5</td>
<td>120±7</td>
<td>—</td>
<td>48.9±06.2*</td>
<td>85.5±3.9*</td>
<td>74.0±13.3*</td>
<td>49.3±2.7*</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ α-Chlorohydrin (75 mg) (G-D)</td>
<td>110±7</td>
<td>111±9</td>
<td>—</td>
<td>47.7±15.2†</td>
<td>76.5±3.3†</td>
<td>62.7±3†</td>
<td>58.7±4†</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ Oestradiol dipropionate (1.2 mg)</td>
<td>115±8</td>
<td>144±11</td>
<td>—</td>
<td>266.3±11.8**</td>
<td>168.2±8.3**</td>
<td>61.3±6.3†</td>
<td>65.5±1.3**</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ α-Chlorohydrin (75 mg) +Oestradiol dipropionate (1.2 mg) (G-F)</td>
<td>116±6</td>
<td>115±8</td>
<td>—</td>
<td>43.6±8.3†</td>
<td>84.3±6.6†</td>
<td>58.3±2.5†</td>
<td>78.6±8.9**</td>
<td>—</td>
</tr>
</tbody>
</table>

* P<0.001 compared with control (G-A)
** P<0.001 compared with (G-C) group
† P<0.01 compared with (G-C) group
‡ P<0.01 compared with Ovariectomy (G-C) group
+ Non significant compared with (G-C) group
All figures: Mean ± S.E.M.
Table 2 Changes in total Protein, RNA, Sialic acid, Glycogen and phosphatase enzyme activity of ovary, uterus, vagina and preputial glands of house rats after α-chlorohydrin treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Name of tissue</th>
<th>Protein</th>
<th>RNA</th>
<th>Sialic acid</th>
<th>Glycogen</th>
<th>Alkaline phosphatases β unit</th>
<th>Acid Phosphatases β unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (G-A)</td>
<td>Ovary</td>
<td>205±4.6</td>
<td>8.6±0.03</td>
<td>3.7±0.2</td>
<td>—</td>
<td>9.8±0.8</td>
<td>4.6±0.3</td>
</tr>
<tr>
<td></td>
<td>Uterus</td>
<td>190±2.8</td>
<td>6.9±0.5</td>
<td>0.5±0.2</td>
<td>4.3±0.1</td>
<td>10.7±1.3</td>
<td>3.1±0.7</td>
</tr>
<tr>
<td></td>
<td>Vagina</td>
<td>216±2.4</td>
<td>7±0.01</td>
<td>2.9±0.0</td>
<td>3.8±0.1</td>
<td>9.6±0.2</td>
<td>3.4±0.1</td>
</tr>
<tr>
<td></td>
<td>Preputial</td>
<td>241±7.3</td>
<td>12.3±0.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>α-Chlorohydrin (150 mg)</td>
<td>Ovary</td>
<td>105±1.7*</td>
<td>4.0±0.9*</td>
<td>1.7±0.2*</td>
<td>—</td>
<td>6.8±0.2*</td>
<td>2.1±0.4*</td>
</tr>
<tr>
<td>(G-B)</td>
<td>Uterus</td>
<td>127±4*</td>
<td>5.5±0.3*</td>
<td>1.6±0.3*</td>
<td>2.9±0.2*</td>
<td>7.2±0.5*</td>
<td>2.5±0.8*</td>
</tr>
<tr>
<td></td>
<td>Vagina</td>
<td>135±3.8*</td>
<td>5.1±0.2*</td>
<td>1.7±0.1*</td>
<td>2.6±0.3*</td>
<td>6.8±0.1*</td>
<td>2.6±0.3*</td>
</tr>
<tr>
<td></td>
<td>Preputial</td>
<td>220±1.3†</td>
<td>6.28±0.45*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy (G-C)</td>
<td>Uterus</td>
<td>168±38†</td>
<td>5.4±0.3*</td>
<td>2±0.9*</td>
<td>2.6±0.3*</td>
<td>6.7±0.2*</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Vagina</td>
<td>205±33†</td>
<td>5.6±0.4*</td>
<td>2.15±0.1*</td>
<td>2.4±0.5*</td>
<td>5.5±0.5*</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Preputial</td>
<td>230±10†</td>
<td>4.8±0.3*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ (75 mg)</td>
<td>Uterus</td>
<td>115±0.9**</td>
<td>4.2±0.2**</td>
<td>1.6±0.2†</td>
<td>2.3±0.4**</td>
<td>4.7±0.3**</td>
<td>—</td>
</tr>
<tr>
<td>α-Chlorohydrin</td>
<td>Vagina</td>
<td>105±0.2**</td>
<td>4.1±0.2**</td>
<td>1.85±0.2††</td>
<td>1.9±4.4**</td>
<td>4.3±0.1**</td>
<td>—</td>
</tr>
<tr>
<td>(G-D)</td>
<td>Preputial</td>
<td>182±1.†</td>
<td>4.1±0.3†</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ (G-E)</td>
<td>Uterus</td>
<td>252±19**</td>
<td>6.8±0.1**</td>
<td>25±0.1††</td>
<td>3.8±0.4**</td>
<td>10.5±0.4**</td>
<td>—</td>
</tr>
<tr>
<td>Oestradiol dipropionate (1.2 mg)</td>
<td>Vagina</td>
<td>280±23**</td>
<td>6.3±0.1**</td>
<td>2.65±0.1††</td>
<td>2.9±0.4†</td>
<td>9.5±0.4**</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Preputial</td>
<td>200±19†</td>
<td>7.0±0.2**</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ovariectomy+ (75 mg)</td>
<td>Uterus</td>
<td>125±43†</td>
<td>4.3±0.4**</td>
<td>1.9±0.3†</td>
<td>2.6±0.5††</td>
<td>4.3±0.4**</td>
<td>—</td>
</tr>
<tr>
<td>α-Chlorohydrin</td>
<td>Vagina</td>
<td>157±14**</td>
<td>4.3±0.3**</td>
<td>1.8±0.4††</td>
<td>2.0±4.4†</td>
<td>4.9±0.5††</td>
<td>—</td>
</tr>
<tr>
<td>(G-F)</td>
<td>Preputial</td>
<td>178±5††</td>
<td>4.0±0.1**</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Biochemical estimations: Mean of six determination

*P<0.001 compared with control (G-A)
†P<0.01 compared with control (G-A)
††Non significant compared with control (G-A)
**P<0.001 compared with ovariectomy (G-C) group
+++P<0.01 compared with ovariectomy (G-C) group
†††Non significant compared with ovariectomy (G-C) group

All figures: Mean ±S.E.M.
(table 2) when compared with ovariectomized controls. Oestradiol dipropionate administration, the protein and RNA contents of uterus and vagina increased in ovariectomized animals \((P<0.001, \text{table 2})\), whereas they showed no change in the preputial gland.

\(\alpha\)-chlorohydrin inhibited the action of oestradiol dipropionate when administered simultaneously in ovariectomized animals was shown by the reduced levels of protein and RNA in the uterus, vagina and preputial glands (table 2, Group F).

Sialic acid: \(\alpha\)-chlorohydrin-treatment caused a reduction in sialic acid contents of ovary, uterus and vagina \((P<0.001, \text{table 2})\).

\(\alpha\)-chlorohydrin also brings about a reduction in the sialic acid contents of uterus, vagina and preputial glands of ovariectomized house rats.

Oestradiol dipropionate treatment enhanced the sialic acid contents of uterus and vagina of ovariectomized animals (table 2).

\(\alpha\)-chlorohydrin and oestradiol, when administered simultaneously did not increase the sialic acid contents of uterus and vagina of ovariectomized animals.

Alkaline phosphatase: The alkaline phosphatase activity in \(\alpha\)-chlorohydrin treatment was low in the ovary, uterus, vagina \((P<0.01)\).

\(\alpha\)-chlorohydrin treatment in ovariectomized animals decreased enzyme activity in the uterus and vagina, whereas oestradiol dipropionate increased it.

\(\alpha\)-chlorohydrin and oestradiol, when administered together also resulted in a decrease of the alkaline phosphatase activity of uterus and vagina (table 2).

Acid phosphatase: \(\alpha\)-chlorohydrin-treatment caused a reduction in the acid phosphatase enzyme activity of uterus and vagina \((P<0.01)\).

Glycogen: \(\alpha\)-chlorohydrin reduce the glycogen contents of uterus and vagina \((P<0.001, \text{table 2})\). In ovariectomized (Group C) the glycogen contents of uterus and vagina were significantly low \((P<0.01, \text{table 2})\). \(\alpha\)-chlorohydrin administration in ovariectomized animals caused a further reduction in the glycogen contents of uterus and vagina \((P<0.001, \text{table 2})\). Oestradiol dipropionate increased the glycogen contents of uterus whereas no change was noticed in the vagina of ovariectomized animals. Oestradiol dipropionate did not increase the glycogen content of the uterus in the presence of \(\alpha\)-chlorohydrin.

Discussion

\(\alpha\)-chlorohydrin is an effective antifertility agent, which appears to be devoid of oestrogenic activity (Stacy et al. 1975). Histological changes throw some light on the probable mode of action of \(\alpha\)-chlorohydrin in the reproductive tract of female house rat. The follicular atresia were conspicuous. The luteal cells were regressed. The regression was of similar nature as seen in PGF-2 \(\alpha\) treatment (Stacy et al. 1975). The uterus of \(\alpha\)-chlorohydrin-treated house rat was smaller in size and showed poorly developed endometrial glands. Vaginal smears were of diestrous type.

Ovariectomy caused a reduction in the weight of uterus and vagina (Freudenberg & Hashimoto 1939) whereas oestrogen treatment increased the weight of uterus and vagina and also brings about Keratinization in ovariectomized house rats (Drill 1966).

Dixit et al. (1974) demonstrated the presence of antioestrogenic activity of \(\alpha\)-chlorohydrin in gerbils (Meriones hurrianae). By using spayed house rats, the antioestrogenic activity of \(\alpha\)-chlorohydrin was demonstrated on the basis of inhibition of uterine weight increase (Astwood Test) in presence of oestradiol dipropionate.

Changes in the sialic acid level in the vagina are dependent on ovarian hormone (Galletti & Gardir 1973). An antioestrogenic action of α-chlorohydrin is reflected in a decreased sialic acid concentration in the vagina of treated house rats. In the present investigation oestradiol-dipropionate caused an increase in the vaginal sialic acid in ovariectomized house rats which is similar to the findings of Coppola and Ball (1966).

Oestrogens specifically increase the glycogen content of uterus in rat (Wallas 1952). The decrease in glycogen content of α-chlorohydrin-treated uterus confirms the antioestrogenic nature of the drug. Gregoire et al. (1967) reported that the glycogen content of vagina was not affected by the administration of oestradiol. In contrast to this, α-chlorohydrin reduced glycogen contents of vagina in house rats.

Atkinson and Engle (1947) reported that oestrogen enhanced the alkaline phosphatase of the uterus in rat. Whereas spaying depletes it (Manning et al. 1967). Depletion in alkaline phosphatase activity was confirmed in spayed house rats. Manning et al. (1967) also reported that oestrogen enhanced acid phosphatase activity of spayed uterus. The acid phosphatase activity was reduced in α-chlorohydrin treated house rats further reflects the antioestrogenic nature of the compound.

Acknowledgement
The investigation was supported by the Indian Council of Medical Research, New Delhi.

References

Atkinson W B and Engle E T 1947 Studies on endometrial alkaline phosphatase during the human menstrual cycle and in the hormone-treated monkey; Endocrinology 40 327–333

Coppola J A and Ball J J 1966 Uterine sialic acid in relation to ovarian steroids; Steroids 8 345–351

Dixit V P, Lohiya N K and Arya M 1974 Observations of the effects of 3-chloro-1, 2-propanediol on the female reproductive tract and pituitary gonadotrophs of the gerbil (Meriones hurrianae); Folia Biol. 22 281–287

———, Arya M and Lohiya N K 1975 Biochemical changes in the female genital tract of hedgehog following 3-chloro-1, 2-propanediol administration; Folia Biol. 23 149–154

Drasher M L 1952 Morphological and chemical observations on the mouse uterus during the estrous cycle and under hormonal treatment; J. exp. Zoology 119 333–353

——— and Babker V F 1970 Male antifertility compounds. Biological properties of U-5897 and 15646; J. Reprod. Fert. 21 267–274

Fiske C H and Subbarow Y 1925 The colorimetric determination of phosphorus; J. Biol. Chem. 66 385–387

Freudenberger C B and Hashimoto E J 1939 Quantitative results of ovarioectomy in immature and adult albino rats; Proc. Soc. exp. Biol. 41 530–532

Galletti F Gardir 1973 Effects of ovarian hormones and synthetic progestins on vaginal sialic acid in rat; J. Endocr. 57 193–198

Gregoire A T, Ramsey H and Adams A 1967 The effect of various doses of oestradiol 17β on glycogen deposition in the rat uterus, cervix and vagina; J. Reprod. Fert. 14 231–234
Antifertility Activity of 3-Chloro-1, 2-Propanediol (U-5897)

Lowry O H, Rosebrough M J, Fall A L and Randall R J 1951 Protein measurement with the Folin phenol reagent; *J. Biol. Chem.* **193** 265-275

Mohla S and Prasad M R N 1969 Oestrogen antioestrogen interaction: Effect of U-11100A, MRL-41 (Clomiphene) and U-11555A on oestrogen induced uterine glycogen and protein synthesis in the rat during delayed implantation; *Acta Endo.* **162** 482-487

Montogomery R 1957 Determination of glycogen; *Arch. Biochem. Biophys.* **67** 318

Samejlik E and Chang M C 1970 Antifertility activity of 3-chloro-1, 2-Propanediol (U-5897) on male rats; *Biol. Reprod.* **2** 299-304

Stacy B D, Gemmell R T and Thorburn G D 1975 Morphology of the corpus luteum during normal and prostaglandin induced luteolysis in sheep; *J. Reprod. Fert.* **43** 402-403

Tsunoda Y and Chang M C 1976 Fertility ability *in vivo and vitro* of spermatozoa of rats and mice treated with α-chlorohydrin; *J. Reprod. Fert.* **46** 401-406

Vickery B H, Erickson G I and Bennett J P 1974 Mechanism of antifertility action of low doses of α-chlorohydrin in the male rat; *J. Reprod. Fert.* **38** 1-10

Walas O 1952 Effect oestrogens on the glycogen content of the rat uterus; *Acta endocerin.* **10** 175-192

Warren L 1959 The Thiobarbituric acid assay of sialic acids; *J. Biol. Chem.* **234** 1971-1975