Aerobiology of Two Species of *Cercospora* Pathogenic to Groundnut

K V MALLAIAH and A S RAO
Department of Botany, Nagarjuna University, Guntur 522 510 AP

(Received 30 July 1979)

Aerial dissemination of conidia of *Cercospora personata* and *C. arachidicola*, which cause 'tikka leaf spot' disease of groundnut (*Arachis hypogaea* L.) was studied using a 'Hirst spore trap' and 'glassrod samplers' for a period of three years from 1974 to '76, covering nine crop periods. The incidence of *C. personata* spots in the field and its conidia in the air were always higher than those of *C. arachidicola*. Conidia of both the species showed a clear diurnal periodicity pattern with peaks occurring at 10.00 hrs for *C. arachidicola* and at 12.00 hrs for *C. personata*. Air-borne conidial concentrations were high when temperature was 29°-31°C and relative humidity levels 75-85%. Mechanical disturbances temporarily increased air-borne conidia steeply. There was a steep decrease of *C. personata* conidia as height increased above the ground level up to 3 m. Numbers of conidia deposited on leaflet surfaces showed a positive correlation with air-borne conidial concentrations.

Key Words: Ground nuts, *Cercospora* spots, Air-borne conidia, Periodicity

Introduction

The tikka leaf spot disease of groundnut (*Arachis hypogaea* L.) caused by *Cercospora personata* (Berk. and Curt.) Ellis and Everh. and *C. arachidicola* Hori are very prevalent wherever the crop is grown and losses amount up to 50% (Jackson & Bell 1969). Feakin (1973) classified this as the most important air-borne fungal disease of the crop. However, work on aerial dispersal of the pathogens involved is very limited. Sreeramulu (1970) studied aerial dispersal of conidia of the two pathogenic species for a single crop season, while Smith and Crosby (1973) studied only *C. arachidicola* in three rainy season crops. Hence air sampling studies were conducted in groundnut fields over three years (1974-'76), covering nine crop periods and the results are presented in this paper.

Materials and Methods

The crop was raised in winter (December–March) and in summer (April–July) under irrigation and as a rainy season crop (July–October) without irrigation. Air spora were
estimated by employing a Casella model of 'Hirst volumetric spore trap' and glassrod samplers, as detailed in our earlier paper (Mallaiah & Rao 1980). The diurnal variation in spore counts and effect of mechanical disturbance on spore concentrations were determined by using rotorod samplers, as also described in the above paper.

Results

Seasonal periodicity
The conidia of *Cercospora* spp. were observed on spore trap slides during winter and rainy season crops but not in summer. Day to day changes in air-borne concentrations of these conidial types recorded from 1974 to '76 together with relevant weather data are presented in figure 1.

The conidia of *C. personata* were caught in low numbers in January and up to the middle of February in winter season crops and then the concentrations rose steeply reaching the peak towards the end of February (1974 and '75) or in the first week of March (1976). The spore concentrations decreased steeply after the peak was reached. In the rainy season crops, spore numbers were very low (1974) or completely absent in August (1975 and '76), slowly increased in September and peaks were observed in the first week (1975) or third week of October (1974 and '76). Spore concentrations were very low in the 1976 rainy season and appeared discontinuously, coinciding with dry conditions that persisted in September and October due to scanty rains and high temperatures.

The conidia of *C. arachidicola* were caught in very low numbers and that too in rainy season crops of 1974 and 1975 and in winter season crop of 1974-'75 only. The disease was observed when the crop was about 30 days old but incidence and spread were very low. The air-borne conidia were observed discontinuously and in very low numbers in August. The concentrations slowly increased in September and the peak was reached either in the first week (1975) or in the last week of October (1974). In winter season crop of 1974-'75 they were caught in low concentrations from December to February with very little increase in concentrations.

Spore numbers
The peak concentrations of *C. personata* were observed when the crop was around 100 days old (table 1). The peak was reached

<table>
<thead>
<tr>
<th>Year</th>
<th>Crop season</th>
<th>Spore Nos. estimated per</th>
<th>Highest daily mean</th>
<th>Date</th>
<th>Age of the crop</th>
<th>C. personata</th>
<th>C. arachidicola</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974</td>
<td>Winter</td>
<td>sq. cm*</td>
<td>270</td>
<td>27.02.74</td>
<td>89</td>
<td>Nil</td>
<td>—</td>
</tr>
<tr>
<td>1974</td>
<td>Rainy</td>
<td>m² of air**</td>
<td>1911</td>
<td>19.10.74</td>
<td>106</td>
<td>29</td>
<td>26.10.74 113</td>
</tr>
<tr>
<td>1975</td>
<td>Winter</td>
<td>"</td>
<td>732</td>
<td>23.02.75</td>
<td>95</td>
<td>15</td>
<td>20.02.75 92</td>
</tr>
<tr>
<td>1975</td>
<td>Rainy</td>
<td>sq. cm</td>
<td>1376</td>
<td>2.10.75</td>
<td>95</td>
<td>262</td>
<td>2.10.75 95</td>
</tr>
<tr>
<td>1976</td>
<td>Winter</td>
<td>"</td>
<td>573</td>
<td>4.03.76</td>
<td>81</td>
<td>Nil</td>
<td>—</td>
</tr>
<tr>
<td>1976</td>
<td>Rainy</td>
<td>"</td>
<td>52</td>
<td>16.10.76</td>
<td>100</td>
<td>Nil</td>
<td>—</td>
</tr>
</tbody>
</table>

*glassrod sampling
**Hirst spore trap estimates
Figure 1 Day-to-day changes in the concentration of air-borne conidia of *Cercospora* spp. together with weather data during winter and rainy season crops of 1974-76.
Table 2 Highest hourly concentration of spores recorded on Hirst trap slides

<table>
<thead>
<tr>
<th>Spore type</th>
<th>Crop season</th>
<th>Highest hourly conc.</th>
<th>Hour</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. personata</td>
<td>1974</td>
<td>12,258</td>
<td>16.00</td>
<td>3.10.74</td>
</tr>
<tr>
<td></td>
<td>1974-75</td>
<td>8,986</td>
<td>12.00</td>
<td>23.02.75</td>
</tr>
<tr>
<td>C. arachidicola</td>
<td>1974</td>
<td>216</td>
<td>10.00</td>
<td>27.10.74</td>
</tr>
<tr>
<td></td>
<td>1974-75</td>
<td>61</td>
<td>10.00</td>
<td>20.02.75</td>
</tr>
</tbody>
</table>

a little earlier in winter than rainy season (except in 1975). Highest daily mean observed in October 1975 was 1911 m⁻³ of air (in Hirst trap sampling) and it was 1376 cm⁻² from grassroot sampling in rainy season crop of 1975. The highest concentration of *C. arachidicola* was only 262 cm⁻² during the rainy season crop of 1975, when the plants were 95 days old. The highest hourly concentrations were observed during rainy season (table 2).

Diurnal periodicity

The conidia of *C. personata* exhibited a distinct diurnal rhythm with peaks occurring at noon, both in winter and in rainy season (figures 2A, B). The minimum numbers were recorded either at 02.00 hrs (rainy season) or 06.00 hrs (winter season) and the concentrations showed a steep increase after daybreak. Hourly changes in air-borne conidial concentrations recorded with rotorod samplers during 1976 crop seasons showed that the rise and fall of concentrations was gradual during day time (figure 2C). Deviations from normal periodicity pattern were however observed on many days of rain or humid cloudy weather. In rainy season, the day to night catch ratio was 4.7:1 while in winter it was 3.97:1.

The conidia of *C. arachidicola*, though occurring in very low concentrations, exhibited a diurnal rhythm with peak at 10.00 hrs during both rainy and winter season crops (figure 3). The day to night catch

![Figure 2](image1.png)

Figure 2 Diurnal periodicity patterns exhibited by air-borne conidia of *C. personata* during rainy season crop of 1974 (A) and winter season crop of 1974-75 (B). Hourly changes during day time observed with rotorod samplers in winter and rainy crop periods of 1976 are shown in 'C'.

![Figure 3](image2.png)

Figure 3 Diurnal periodicity patterns exhibited by air-borne conidia of *C. arachidicola* during rainy season (A) and winter season (B) crop periods.
ratio was 3:1 during rainy season and in winter it was 3.2:1. Variations from normal periodicity pattern were observed on a few days in rainy season and they were much less in winter season crop.

Effect of weather
An analysis of spore concentrations in relation to temperature showed that highest concentrations occurred when maximum day temperatures were 29°–30°C (figure 4A) and minimum night temperatures were 18.4°–

![Figure 4](image)

Figure 4 Effect of temperature (A) and relative humidity (B) on the incidence of air-borne conidia of *C. personata*. The values are presented as percentages to the maximum recorded at a point in the range observed

25.8°C. Relative humidity range of 65–75% was optimum for the incidence of these conidial types (figure 4B). Fairly high concentrations were observed at higher relative humidities but below the optimum range the concentrations were very low.

Rain is a very important factor that affects conidial concentrations in air. Lower than normal concentrations were observed during rainy days. However, concentrations increased before the start of rainfall on many occasions and this coincided with the prevalence of high wind speeds. Higher concentrations were observed even at low wind speeds of 2–4 kmph and increase in wind speeds always resulted in an increase in spore numbers.

Mechanical disturbance
Unusually high concentrations of *C. personata* conidia occurred on certain days or at certain times of the day which could not be related to changes in weather conditions but coincided with field operations like watering, weeding etc. Rotorod samplers were operated in the field continuously for 70 min and the rotating units were changed at 10 min intervals. Infected plants around the trap were shaken gently for 1 min after the first 10 min period. The concentration of *C. personata* conidia rose steeply during the disturbed state but predisturbance concentrations were restored in the third 10 min period. The ratio of concentrations between predisturbed and disturbed states were 1:19 on average. The conidia of *C. arachidicola* were not observed during the undisturbed periods but occurred soon after the mechanical disturbance. *C. arachidicola* spots were very few near the trapping area and the conidia liberated due to disturbance were perhaps diffused or settled and they were not trapped further.

Vertical profiles
Spore concentrations at different heights up to three meters above the ground level in the field was determined by exposing glass-rod with cellophane strips coated with an adhesive, at 0.5 m intervals. The conidia of *C. personata* were observed at all heights of exposure but the concentrations decreased with increasing height.

Horizontal gradients
The conidia of *C. personata* were deposited on 'gravity slides' exposed at different distances up to 100 m from one end of the field in windward direction. They decreased with increasing distance and, from 40 m onwards, their appearance was discontinuous.
Spore deposition on leaflet surfaces

The number of conidia deposited on leaflet surfaces were observed by the 'Sticky cellotape method'. The numbers on upper (adaxial) surface were always higher than those deposited on lower surface. The ratio of conidia deposited on upper to lower surfaces was in the range of 1:0.200-0.860 and the average was 1:0.500. The number of conidia deposited on leaf surfaces showed a positive correlation with the number of conidia trapped on glassrod samplers on those days (table 3). The ratio between spores trapped from air to that deposited on leaflet surface was 1:0.265 on average and the range was 1:0.1660-0.522.

Discussion

The conidia of C. personata were observed in all the winter and rainy season crops while those of C. arachidicola were caught on trap slides in only three crop periods. The absence of C. arachidicola conidia in other crop periods is attributable to its very meagre incidence in the field. Though the geographical distribution of C. personata and C. arachidicola (CMI maps 152 and 166, respectively) is similar, the incidence of infection by either pathogen differs markedly (Jackson & Bell 1969). Thus C. arachidicola is predominant in USA (Woodroof 1933 Jenkins 1938) while C. personata is predominant in India (Butler 1918, Mundkur & Chattopadhyay 1967). The absence of airborne conidia of C. personata at Georgia, USA (Smith & Crosby 1973) may be due to the same reason.

In all the crop periods the conidia were caught on spore trap slides only after the disease appears in the field indicating that the primary inoculum was too small to be detected by the spore trap used. Hirst (1959) pointed out that "no trap is likely to detect spores as sensitively as an acre of susceptible crop in weather favourable to infection". Further, soil-borne inoculum was reported to cause primary infection by Cercospora spp. (Hemingway 1954, Shanta 1960, Jackson & Bell 1969).

The tikka leaf spots appeared when the crop was 30-40 days which agrees with earlier observation of Ramakrishna and

<table>
<thead>
<tr>
<th>Date</th>
<th>No. of spores deposited* on upper surface cm²</th>
<th>Ratio of upper to lower</th>
<th>Average No. of spores deposited cm⁻²</th>
<th>No. of spores trapped on trap surface on the day</th>
<th>Ratio between air-borne spores to deposited spores</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.03.76</td>
<td>22</td>
<td>1 : 0.408</td>
<td>16</td>
<td>93</td>
<td>1 : 0.172</td>
</tr>
<tr>
<td>8.03.76</td>
<td>31</td>
<td>1 : 0.709</td>
<td>27</td>
<td>127</td>
<td>1 : 0.220</td>
</tr>
<tr>
<td>12.03.76</td>
<td>43</td>
<td>1 : 0.860</td>
<td>40</td>
<td>135</td>
<td>1 : 0.298</td>
</tr>
<tr>
<td>27.09.76</td>
<td>5</td>
<td>1 : 0.200</td>
<td>3</td>
<td>15</td>
<td>1 : 0.200</td>
</tr>
<tr>
<td>29.09.76</td>
<td>7</td>
<td>1 : 0.428</td>
<td>5</td>
<td>21</td>
<td>1 : 0.238</td>
</tr>
<tr>
<td>5.10.76</td>
<td>3</td>
<td>1 : 0.330</td>
<td>2</td>
<td>12</td>
<td>1 : 0.166</td>
</tr>
<tr>
<td>8.10.76</td>
<td>5</td>
<td>1 : 0.400</td>
<td>35</td>
<td>18</td>
<td>1 : 0.522</td>
</tr>
<tr>
<td>10.10.76</td>
<td>12</td>
<td>1 : 0.666</td>
<td>10</td>
<td>33</td>
<td>1 : 0.303</td>
</tr>
</tbody>
</table>

*Each number is average of ten observations
Appraao (1968). The air-borne conidia of *C. personata* increased as the crop reached maturity, while those of *C. arachidicola* remained low till the harvest time. In Tanzania, Hemingway (1955) observed more than ten-fold increase of *C. personata* over *C. arachidicola* in the field in a given period and this higher rate of spread was attributed to greater spore-producing ability of the former. Sreeramulu (1970) observed that airborne conidia of *C. personata* outnumber those of *C. arachidicola*. Seasonal changes of conidial concentrations of *C. personata* showing a prolonged lag phase leading to a short exponential phase towards the end of the crop is a characteristic feature of secondarily air-borne diseases that multiply at compound interest rate (Van der Plank 1963). Such a pattern of incidence was also observed by Lawrence and Meredith (1970) for *C. beticola* and by Smith and Crosby (1973) for *C. arachidicola*.

The difference in peak hours of two species of *Cercospora*, *C. personata* showing the peak at 10.00 hrs and *C. arachidicola* at 12.00 hrs, may be explained on the basis of abundance of spore production. Under normal conditions the increase of concentrations start after daybreak and in the case of a smaller source (for *C. arachidicola*), spore production may exhaust sooner, but with a larger source (for *C. personata*) the concentrations may build up for a longer time. The peak hours of 10 to 12 were reported for other species of *Cercospora* (Meredith 1967, Sreeramulu et al. 1971, Berger 1973). However, Pathak and Pady (1965) did not observe a clear periodicity for *Cercospora* group, while Smith and Crosby (1973) observed delayed peaks between 11.00 and 15.00 hrs for *C. arachidicola*.

The diurnal rhythm for both the species is related to changes in temperature and atmospheric turbulence during daytime. The conidial concentrations were high even at low wind speeds of 2–4 kmph and this indicates that conidial attachment to conidio- phore gives little resistance for their take-off. Meredith (1967) observed that conidia and conidiophores of *C. beticola* underwent violent hygroscopic movements when transferred from saturated to drier atmosphere and conidia were detached from conidiophores. Easy release of conidia of *C. personata* and *C. arachidicola* even at low wind speeds in the morning with decreasing relative humidity and increasing temperature suggests similar hygroscopic movements for these species also.

The effect of rain was to decrease the airborne conidial concentrations temporarily. Prolonged rain washes down air-borne spores as well as spores from leaf spots. Field observations showed that on normal days a bloom of conidial mass is present at the centre of *C. personata* leafspots but when observed after rains the spots did not show such spore mass. Washing down of conidial mass due to rain was reported for *C. api* also (Berger 1973). Increase of spor concentration preceeding the rains may be due to violent shaking of the spore-bearing structures by the increased wind speeds preceeding the rain and most of the variations from normal diurnal periodicity pattern were observed on rainy days.

Acknowledgements

Thanks are due to late Professor T Sreeramulu, the then Head of the Department of Botany, Andhra University, Waltair, for inspiring the senior author to undertake this work. One of us (KVM) is thankful to the Council of Scientific and Industrial Research, New Delhi for awarding a research fellowship.
References

Berger R D 1973 Early blight of celery: Analysis of disease spread in Florida; Phytopathology 63 1161-1165

Butler EJ 1918 Fungi and Disease in Plants (Dhara Dun: B.S. & M.S., New Delhi: Periodical Experts) 547 pp

Feakin S D (Ed.) 1973 Pest Control in Groundnut; PANS manual No. 2, 138 pp

Hirst J M 1959 Spore liberation and dispersal; in Plant Pathology: Problems and Progress 1908-1958 pp. 529-538 eds Holten et al. (USA: Maddison)

Jackson C R and Bell D K. 1969 Diseases of Peanut (Groundnut) Caused by Fungi, Research Bulletin 56, University of Georgia

Jenkins W A 1938 Two fungi causing leafspots of Peanut; J. agr. Res. 56 317-332

Lawrence J S and Meredith D S 1970 Wind dispersal of Cercospora beticola; Phytopathology 60 1076-1078

Meredith DS 1967 Conidium release and dispersal in Cercospora beticola; Phytopathology 57 889-893

Mundkur B B and Chattopadhyay S B 1967 Fungi and Plant Diseases (Macmillan & Co. Ltd.) 348 pp

Pathak V K and Pady S M 1965 Numbers and viability of certain air-borne fungus spores; Mycologia 57 301-310

Ramakrishna V and Apparao A 1968 Studies on the tikka disease of groundnut; Indian Phytopath. 21 31-36

Shanta P 1960 Studies on Cercospora leafspot of groundnuts (Arachis hypogaea L.) 1. Effect of the environmental factors on disease incidence and on survival of the pathogen; J. Madras Univ. 30 167-177

Smith D H and Crosby F L 1973 Aerobiology of two peanut leafspot fungi; Phytopathology 63 703-707

Sreeramulu T 1970 Conidial dispersal in two species of Cercospora causing tikka leaf spots on groundnut (Arachis hypogaea L.); Indian J. agric. Sci. 40 173-178

---, Vittal B P R and Ramakrishna V 1971 Aerobiology of Cercospora koepkei Kruger causing the yellow spot disease of sugarcane; Indian J. agric. Sci. 41 655-662

Woodroof N C 1933 Two leafspots of peanut (Arachis hypogaea L.); Phytopathology 23 627-640