Carriazo [2] defined the notion of bi-slant submanifolds of an almost Hermitian manifold. As a special case of these submanifolds, he introduced anti-slant submanifolds which he, later called as pseudo-slant submanifolds [2]. The purpose of the present paper is to study the pseudo-slant submanifolds of a Sasakian manifold. In this paper we work out integrability conditions of distributions on these submanifolds and also, obtain a few interesting results of this setting.

Key Words: Sasakian Manifold; Slant Submanifold; Pseudo-Slant Submanifold

1. INTRODUCTION

The geometry of slant immersions was initiated by Chen [4] as a natural generalization of both holomorphic and totally real immersions. Many authors have studied slant immersions in almost Hermitian manifolds. Lotta [3] introduced the notion of slant immersions in contact manifolds. Cabrerizo et al. [6] studied and characterized slant submanifolds of K-contact and Sasakian manifolds and have given several examples of such immersions. Recently, Carriazo [2] defined and studied bi-slant immersions in almost Hermitian manifolds and simultaneously gave the notion of pseudo-slant submanifold in almost Hermitian manifolds. The purpose of the present paper is to define and study the contact version of pseudo-slant submanifolds. In section 2 we review and collect some necessary results. In section 3 we define pseudo-slant submanifolds of contact manifolds. In particular, we study the pseudo-slant submanifolds in the setting of Sasakian manifolds and work out integrability conditions of distributions involved in the definition of pseudo-slant submanifolds and have also obtained some geometrically significant results of this setting.
2. Preliminaries

Let \((\bar{M}, g)\) be an odd dimensional Riemannian manifold, \(T\bar{M}\) the Lie algebra of vector fields in \(\bar{M}\). Then \(\bar{M}\) is said to be an almost contact metric manifold [5], if there exist on \(\bar{M}\) a tensor field \(\phi\) of type \((1, 1)\) and a global vector field \(\xi\) (known as structure vector field) such that, if \(\eta\) is the dual 1-form of \(\xi\) then

\[
\phi^2 X = -X + \eta(X)\xi, \quad g(X, \xi) = \eta(X)
\]
\[
g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).
\]

From the above relations, it also follows that

\[
g(\phi X, Y) = -g(X, \phi Y)
\]

for any \(X, Y \in T\bar{M}\). Let \(\Phi\) denote a 2-form in \(\bar{M}\) given by \(\Phi(X, Y) = g(X, \phi Y)\) for all \(X, Y \in T\bar{M}\). The 2-form \(\Phi\) is then called the fundamental 2-form on \(\bar{M}\). The manifold \(\bar{M}\) is said to be a contact metric manifold if \(\Phi = d\eta\).

If \(\xi\) is a Killing vector field with respect to \(g\), the contact metric structure is called \(K\)-contact structure. It is known that a contact metric manifold is \(K\)-contact if and only if \(\nabla_X \xi = -\phi X\), for any \(X \in T\bar{M}\), where \(\nabla\) denotes the Levi-Civita connection on \(\bar{M}\). The almost contact structure of \(\bar{M}\) is said to be normal if \([\phi, \phi] + 2d\eta \otimes \xi = 0\), where \([\phi, \phi]\) is the Nijenhuis tensor of \(\phi\). A Sasakian manifold is a normal contact metric manifold. Every Sasakian manifold is a \(K\)-contact manifold. It is known that an almost contact metric manifold is a Sasakian manifold if and only if

\[
(\nabla_X \phi) Y = g(X, Y)\xi - \eta(Y)X.
\]

Moreover, on a Sasakian manifold \(\bar{M}\)

\[
\nabla_X \xi = -\phi X
\]

for any \(X, Y \in T\bar{M}\) and \(\xi\) is the structure vector field.

Now, let \(M\) be a submanifold immersed in \(\bar{M}\); we denote by the same symbol \(g\) the induced metric on \(M\). Let \(TM\) be the Lie-algebra of vector fields on \(M\) and \(T^\perp M\) the set of all vector fields normal to \(M\). Then the Gauss and Weingarten formulas are given by

\[
\nabla_X Y = \nabla_X Y + h(X, Y)
\]
\[
\nabla_X V = -A_V X + \nabla^\perp_X V
\]

for any \(X, Y \in TM\) and \(V \in T^\perp M\), where \(\nabla^\perp\) is the connection in the normal bundle, \(h\) is the second fundamental form of \(M\) and \(A_V\) is the shape operator associated with \(V\). The second fundamental form \(h\) and the shape operator \(A_V\) are related by

\[
g(A_V X, Y) = g(h(X, Y), V).
\]
For any $X \in TM$ and $V \in T^\perp M$, we write
\begin{align}
\phi X &= TX + NX \\
\phi V &= tV + nV
\end{align}
where TX (resp. tV) denotes the tangential part of ϕX (resp. ϕV) and NX (resp. nV) denotes the normal part of ϕX (resp. ϕV). The covariant derivative of T and N are defined as
\begin{align}
(\bar{\nabla}_X T)Y &= \nabla_X TY - T\nabla_X Y \\
(\bar{\nabla}_X N)Y &= \nabla^\perp_X NY - N\nabla_X Y.
\end{align}
The submanifold M is invariant if N is identically zero, that is, $\phi X \in TM$, for any $X \in TM$. On the other hand, M is an anti-invariant submanifold if T is identically zero, that is, $\phi X \in T^\perp M$, for any $X \in TM$. The distribution spanned by the structure vector field ξ is denoted by $\langle \xi \rangle$. By applying equation (4) and (7) on (3), it follows that
\begin{align}
(a) \quad \nabla_X \xi &= -TX \\
(b) \quad h(X, \xi) &= -NX
\end{align}
for all $X \in TM$.

3. PSEUDO-SLANT SUBMANIFOLDS OF ALMOST HERMITIAN AND ALMOST CONTACT METRIC MANIFOLDS

In this section we study pseudo-slant submanifolds of Sasakian manifold and obtain integrability conditions of the distributions on pseudo-slant submanifolds. To begin with, we show how to obtain pseudo-slant submanifolds of almost Hermitian manifolds by slant submanifold of contact manifolds.

Let M be a Riemannian manifold, isometrically immersed in an almost contact metric manifold $(\tilde{M}, \phi, \xi, \eta, g)$. From now on, we suppose that the structure vector field ξ is tangent to M. Hence, if we denote by D the orthogonal distribution to ξ in TM, then
\[TM = D \oplus \langle \xi \rangle. \]

In this setting, for each nonzero vector X tangent to M at x, such that X is not proportional to ξ_x, we denote by $\theta(X)$ the angle between ϕX and D_x. Then, M is said to be slant [3] if the angle $\theta(X)$ is constant, which is independent of the choice of $x \in M$ and $X \in T_x M - \langle \xi_x \rangle$. The angle θ of the slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant immersions with slant angle $\theta = 0$ and $\theta = \pi/2$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion. In the setting of submanifolds of an almost Hermitian manifolds, slant distribution are defined on the same lines. They are defined as follows.
Given a submanifold S, isometrically immersed in an almost Hermitian manifold (\bar{S}, J, g_1), a differentiable distribution ν on S is said to be a slant distribution, if for any nonzero $X \in \nu_x, x \in S$, the angle between JX and the vector space ν_x is constant, that is, it is independent of choice of $x \in S$ and $X \in \nu_x$. This constant angle is called the slant angle of the slant distribution ν.

The following theorem provides a useful characterization for the existence of a slant distribution on a contact metric manifold.

Theorem 1 [7] — Let ν be a distribution on \bar{M}, orthogonal to ξ. Then, ν is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that $(PT)^2X = -\lambda X$, for any $X \in \nu$, where P denotes the orthogonal projection on ν. Furthermore, in this case $\lambda = \cos^2 \theta_\nu$.

A submanifold S of an almost Hermitian manifolds \bar{S} is said to be pseudo-slant submanifold if there exist on S two orthogonal distributions D_1 and D_2 such that $TS = D_1 \oplus D_2$, where D_1 is totally real distribution (i.e., $JD_1 \subset T^\perp S$) and D_2 is slant distribution with the slant angle $\theta \neq \pi/2$ (see [2]). In particular, if dim $D_1 = 0$ and $\theta \in (0, \pi/2)$, then S is a proper slant submanifold of almost Hermitian manifold \bar{S} introduced by Chen [4].

In the following paragraphs, we show that there is a relationship between slant submanifolds of almost contact metric manifolds and pseudo-slant submanifolds of almost Hermitian manifolds.

Let $(\bar{M}, \phi, \xi, \eta, g)$ be an almost contact metric manifold. Then we consider the manifold $\bar{M} \times R$ and denote by $(X, f \frac{d}{dt})$ a vector field of $\bar{M} \times R$, where X is tangent to \bar{M}, t is the coordinate of R and f is a differentiable function on $\bar{M} \times R$. An almost complex structure J on this manifold is defined as

$$J \left(X, f \frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X) \frac{d}{dt}\right).$$

(12)

It is well known that $(\bar{M} \times R, J, g_1)$ is an almost Hermitian manifold [9], where g_1 denotes the product metric given by

$$g_1 \left(\left(X, f \frac{d}{dt}\right), \left(Y, h \frac{d}{dt}\right)\right) = g(X, Y) + fh.$$

We now recall the following important result due to Lotta.

Theorem 2 [3] — Let M be a slant submanifold of dimension n of an almost contact metric manifold \bar{M} with slant angle $\theta \neq \pi/2$. Then we have

- n is even \iff ξ is orthogonal to M
- n is odd \iff ξ is tangent to M.

The following result provides a method to obtain a pseudo-slant submanifold of $\bar{M} \times R$ from slant submanifold of \bar{M}.

Theorem 3 — Let M be a non anti-invariant even dimensional slant submanifold of an almost contact metric manifold \bar{M}. Then $\bar{M} \times R$ is a pseudo-slant submanifold of the almost Hermitian manifold $\bar{M} \times R$, with totally real distribution $D_1 = \left\{\left(0, \frac{d}{dt}\right)\right\}$ and slant distribution
\[D_2 = \{(X, 0) | X \in D \}. \]

Proof: It is clear that distribution \(D_1 \) and \(D_2 \) are orthogonal and \(T(M \times R) = D_1 \oplus D_2 \).

Moreover, by virtue of equation (12)
\[
J \left(0, \frac{d}{dt} \right) = -(\xi, 0).
\]

Hence, \(D_1 \) is a totally real distribution in view of Theorem 2. Finally, it is easy to see that \(D_2 \) is a slant distribution in the sense of Papaghiuc [9].

To introduce pseudo-slant submanifold of an almost contact metric manifold; first we recall the definition of Bi-slant submanifold.

Definition 1[7] — \(M \) is said to be a Bi-slant submanifold of an almost contact metric manifold \(\bar{M} \) if there exist two orthogonal distributions \(D_1 \) and \(D_2 \) on \(M \) such that
(i) \(TM \) admits the orthogonal direct decomposition \(TM = D_1 \oplus D_2 \oplus \langle \xi \rangle \)
(ii) The distribution \(D_1 \) is slant with angle \(\theta_1 \)
(iii) The distribution \(D_2 \) is slant with angle \(\theta_2 \)

Definition 2 — We say that \(M \) is a pseudo-slant submanifold of an almost contact metric manifold \(\bar{M} \) if there exist two orthogonal distributions \(D_1 \) and \(D_2 \) on \(M \) such that
(i) \(TM \) admits the orthogonal direct decomposition \(TM = D_1 \oplus D_2 \oplus \langle \xi \rangle \)
(ii) The distribution \(D_1 \) is anti-invariant i.e., \(\phi D_1 \subseteq T^\perp M \)
(iii) The distribution \(D_2 \) is slant with slant angle \(\theta \neq \pi/2 \)

From the above definition it is clear that if \(\theta = 0 \), then the pseudo-slant submanifold is a semi-invariant submanifold. On the other hand if we denote the dimension of \(D_i \) by \(d_i \), for \(i = 1, 2 \), then we find the following cases
(a) If \(d_2 = 0 \) then \(M \) is an anti-invariant submanifold.
(b) If \(d_1 = 0 \) and \(\theta = 0 \), then \(M \) is an invariant submanifold.
(c) If \(d_1 = 0 \) and \(\theta \neq 0 \), then \(M \) is a proper slant submanifold, with slant angle \(\theta \).

A pseudo-slant submanifold is proper if \(d_1 d_2 \neq 0 \) and \(\theta \neq 0 \).

If we put \(\theta_1 = \pi/2 \) and \(\theta_2 = \theta \in [0, \pi/2) \) in the following example of 5-dimensional bi-slant submanifold \(M \) with slant angles \(\theta_1 \) and \(\theta_2 \) (see [7])
\[
x(u, v, w, s, t) = 2(u, 0, w, 0, v \cos \theta_1, v \sin \theta_1, s \cos \theta_2, s \sin \theta_2, t) \tag{13}
\]
then it becomes a pseudo-slant submanifold in \(R \) [9]. Furthermore, it is easy to see that
\[
e_1 = 2 \left(\frac{\partial}{\partial x^1} + y^1 \frac{\partial}{\partial Z} \right), \quad e_2 = 2 \frac{\partial}{\partial y^2}, \quad e_3 = 2 \left(\frac{\partial}{\partial x^3} + y^3 \frac{\partial}{\partial Z} \right), \quad e_4 = 2 \cos \theta \frac{\partial}{\partial y^3} + 2 \sin \theta \frac{\partial}{\partial y^4}, \quad e_5 = 2 \frac{\partial}{\partial Z} = \xi
\]
form a local orthonormal frame of TM. We define, the distributions $D_1 = \langle e_1, e_2 \rangle$ and $D_2 = \langle e_3, e_4 \rangle$. Then it is clear that $TM = D_1 \oplus D_2 \oplus \langle \xi \rangle$, in which D_1 is anti-invariant distribution and D_2 is slant distribution with slant angle θ.

Suppose M to be a pseudo-slant submanifold of an almost contact metric manifold \bar{M}. Then, for any $X \in TM$, put

$$X = P_1 X + P_2 X + \eta(X) \xi$$

(14)

where P_i ($i = 1, 2$) are projection maps on the distributions D_1 and D_2. Now operating ϕ on both sides of equation (14)

$$\phi X = NP_1 X + TP_2 X + NP_2 X.$$

(15)

It is easy to see that

$$TX = TP_2 X, \quad NX = NP_1 X + NP_2 X$$

(16)

and,

$$\phi P_1 X = NP_1 X, \quad TP_1 X = 0;$$

(17)

$$TP_2 X \in D_2.$$

(18)

Since D_2 is slant distribution, by Theorem 1

$$T^2 X = - \cos^2 \theta X$$

(19)

for any $X \in D_2$.

Now, we have the following theorem:

Theorem 4 — Let M be a submanifold of an almost contact metric manifold \bar{M}, such that $\xi \in TM$. Then M is a pseudo-slant submanifold if and only if there exists a constant $\lambda \in (0, 1]$ such that

(i) $D = \{X \in TM \mid T^2 X = -\lambda X\}$ is a distribution on M

(ii) For any $X \in TM$, orthogonal to D, $TX = 0$.

Furthermore, in this case $\lambda = \cos^2 \theta$, where θ denotes the slant angle of D.

PROOF: Set $\lambda = \cos^2 \theta$, then it follows from (17) and (18) that $D = D_2$. Conversely, consider the orthogonal direct decomposition $TM = D \oplus D^\perp \oplus \langle \xi \rangle$. It is evident that $TD \subseteq D$. Hence, by using statement (ii) it is clear that D^\perp is an anti-invariant distribution. Finally, Theorem 1 and statement (i) imply that D is a slant distribution, with slant angle θ satisfying $\lambda = \cos^2 \theta$.

Now, we will discuss the integrability of distributions involved in a pseudo-slant submanifold of a Sasakian manifold.

If μ is the invariant subspace of the normal bundle $T^\perp M$ then, in the case of pseudo-slant submanifold, the normal bundle $T^\perp M$ can be decomposed as follows

$$T^\perp M = \mu \oplus N D_1 \oplus N D_2.$$

(20)
As D_1 and D_2 are orthogonal distributions on M, $g(Z, X) = 0$ for each $Z \in D_1$ and $X \in D_2$. Thus, by equation (7) and (1), we may write

$$g(NZ, NX) = g(\phi Z, \phi X) = g(Z, X) = 0.$$

That means the distributions ND_1 and ND_2 are mutually perpendicular. In fact, the decomposition (20) is an orthogonal direct decomposition.

For a pseudo-slant submanifold of a Sasakian manifold the following lemmas play an important role in working out the integrability conditions of the distributions involved in this setting.

Lemma 1 — Let M be a pseudo-slant submanifold of a Sasakian manifold \bar{M}. Then

$$A_{\phi Y}X = A_{\phi X}Y$$

for all $X, Y \in D_1$.

Proof: For any X, Y in D_1 and Z in TM, using (6), (1), (3) and (4) we find that

$$g(A_{\phi Y}X, Z) = -g(\phi \nabla_Z X - \phi \nabla_Z Y)$$

$$= -g(\phi \nabla_Z X, Y)$$

i.e.,

$$g(A_{\phi Y}X, Z) = -g(\nabla_Z \phi X - (\nabla_Z \phi)X, Y).$$

On applying equations (2) and (5) the above equation yields

$$g(A_{\phi Y}X, Z) = g(A_{\phi X}Y, Z)$$

The result follows from the above equation.

Lemma 2 — Let M be a pseudo-slant submanifold of a Sasakian manifold \bar{M}, then

$$[X, \xi] \in D_1$$

for all $X \in D_1$.

Proof: For any $X \in D_1$ and $Z \in D_2$

$$g([X, \xi], TZ) = g(\bar{\nabla}_\xi TZ, X).$$

On using equations (2) & (7) we have

$$\bar{\nabla}_\xi TZ = -\bar{\nabla}_\xi NZ + \phi \bar{\nabla}_\xi Z.$$

Applying the above formula in (23) and using (6), (7), (4) (5) and (11)(b), we get

$$g([X, \xi], TZ) = -g(NX, NZ) + g(NX, NZ) = 0.$$
This proves the lemma completely.

Lemma 3 — Let M be a pseudo-slant submanifold of a Sasakian manifold \tilde{M} then, for any $X, Y \in D_1 \oplus D_2$

$$g([X, Y], \xi) = 2g(X, TY). \quad (24)$$

The proof of equation (24) is straightforward and may be obtained by using (11)(a).

Proposition 1 — Let M be a pseudo-slant submanifold of a Sasakian manifold \tilde{M}. Then, anti-invariant distribution D_1 is integrable.

Proof: For any $X, Y \in D_1$ and $Z \in D_2$, by (14)

$$g([X, Y], TP_2Z) = -g(\phi[X, Y], P_2Z)$$

Now, using (2) and (5), we find

$$g([X, Y], TP_2Z) = g(A_{\phi Y}X - A_{\phi X}Y, P_2Z).$$

Now, the integrability of the distribution D_1 follows on using equations (21) and (24).

Corollary 1 — On a pseudo-slant submanifold M of a Sasakian manifold \tilde{M}, the distribution $D_1 \oplus \langle \xi \rangle$ is integrable.

The corollary follows from Proposition (1) and equation (22).

Lemma 4 — Let M be a pseudo-slant submanifold of a Sasakian manifold \tilde{M}. Then, the slant distribution D_2 is not integrable.

By the definition of pseudo-slant submanifold and in view of equation (24) the result follows.

Proposition 2 — Let M be a pseudo-slant submanifold of \tilde{M} then the distribution $D_2 \oplus \langle \xi \rangle$ is integrable if and only if

$$h(Z, TW) - h(W, TZ) + \nabla^\perp_Z NW - \nabla^\perp_W NZ$$

lies in ND_2 for each $Z, W \in D_2 \oplus \langle \xi \rangle$.

Proof: Making use of equations (7), (2), (4) and (5), we obtain

$$g(N[Z, W], NX) = g(h(Z, TW) - h(W, TZ) + \nabla^\perp_Z NW - \nabla^\perp_W NZ, NX)$$

for each $X \in D_1$ and $Z, W \in D_2$. The result follows on using the fact that ND_1 and ND_2 are mutually perpendicular.

Cabrerizo et al. [6] have obtained the following expression for ∇T in case of some slant submanifolds of Sasakian manifolds

$$(\nabla_X T)Y = \cos^2 \theta (g(X, Y)\xi - \eta(Y)X) \quad (25)$$

for any $X, Y \in TM$.
Note — 1 Formula (25) provides a sufficient condition for a submanifold to be a proper slant submanifold of a \(K \)-contact manifold (see [6]).

Consider the 5-dimensional pseudo-slant submanifold of \(R^9 \) given by equation (13) i.e.,
\[
x(u, v, w, s, t) = 2(u, 0, w, 0, v, s \cos \theta, s \sin \theta, t)
\]
where \(\theta \in (0, \pi/2) \) is the slant angle of the slant distribution \(D_2 \). Then it is easy to see that
\[
(\nabla_X T)Y = \cos^2 \theta(g(P_2X, Y)\xi - \eta(Y)P_2X)
\]
for any \(X, Y \in TM \). If we take \(X = P_2X + \eta(X)\xi \) and \(Y = P_2Y + \eta(Y)\xi \) then (26) implies that
\[
(\nabla_X T)Y = \cos^2 \theta(g(X, Y)\xi - \eta(Y)X)
\]
Thus, in view of note (1), the distribution \(D_2 \oplus \langle \xi \rangle \) works as the tangent bundle of proper slant submanifold. On the other hand if \(X, Y \in D_1 \oplus \langle \xi \rangle \) then (26) implies
\[
(\nabla_X T)Y = 0
\]
which shows that anti-invariant submanifolds satisfy the above equation. We want to realize that (26) is a natural condition for pseudo-slant submanifolds of a Sasakian manifold analogous to slant and semi-slant submanifolds of Sasakian manifolds worked out by Cabreroiz et al. (see [6, 7]. Now, we have the following theorem

Theorem 5 — Let \(M \) be a proper pseudo-slant submanifold with angle \(\theta \), of a Sasakian manifold \(\tilde{M} \). Then, for any \(X, Y \in TM \).
\[
(\nabla_X T)Y = A_{NP_1Y}X + A_{NP_2Y}X + th(X, Y) + g(X, Y)\xi - \eta(Y)X.
\]
Hence, \(M \) satisfies (26) if and only if
\[
A_{NY}X = A_{NX}Y + \eta(Y)P_1X - \eta(X)P_1Y - \sin^2 \theta(\eta(X)P_2Y - \eta(Y)P_2X)
\]
where \(NX = NP_1X + NP_2X \)

Proof : For any \(X, Y \in TM \)
\[
\tilde{\nabla}_X \phi Y = (\tilde{\nabla}_X \phi)Y + \phi \tilde{\nabla}_X Y
\]
Now using (2), (7), (4), (5) and (9) and comparing tangential parts we obtain (27). Suppose \(M \) is a proper pseudo-slant submanifold satisfying (26). Then, by (27)
\[
\cos^2 \theta(g(P_2X, Y)\xi - \eta(Y)P_2X) = A_{NP_1Y}X + A_{NP_2Y}X + th(X, Y) + g(P_1X, Y)\xi
\]
\[
+ g(P_2X, Y)\xi - \eta(Y)P_1X - \eta(Y)P_2X
\]
or,
\[A_{NP_1}X + A_{NP_2}Y = -\text{th}(X, Y) - g(P_1 X, Y)\xi + \eta(Y)P_1 X \]
\[- \sin^2 \theta(g(P_2 X, Y)\xi - \eta(Y)P_2 X). \]

Similarly,
\[A_{NP_1}X + A_{NP_2}Y = -\text{th}(X, Y) - g(P_1 Y, X)\xi + \eta(X)P_1 Y \]
\[- \sin^2 \theta(g(P_2 Y, X)\xi - \eta(X)P_2 Y), \]

Finally, we have
\[A_{NY}X = A_{NX}Y + \eta(Y)P_1 X - \eta(X)P_1 Y - \sin^2 \theta(\eta(X)P_2 Y - \eta(Y)P_2 X) \]

Conversely, suppose (28) holds. Then for any \(Z \in TM \)
\[g(A_{NY}X, Z) = -g(\text{th}(Y, Z), X) + \eta(Y)g(P_1 X, Z) - \eta(X)g(P_1 Y, Z) \]
\[- \sin^2 \theta(\eta(X)g(P_2 Y, Z) - \eta(Y)g(P_2 X, Z)). \]

Interchanging \(X \) and \(Z \), and making use of the fact that \(g(P_1 X, Y) = g(X, P_1 Y) \), for each \(X, Y \in TM \), we get
\[g(A_{NY}X, Z) = -g(\text{th}(Y, Z), X) + \eta(Y)g(P_1 X, Z) - \eta(Z)g(P_1 Y, X) \]
\[- \sin^2 \theta(\eta(Z)g(P_2 Y, X) - \eta(Y)g(P_2 X, Z)). \]

Taking account of equation (14), the above equation yields
\[g(A_{NY}X, Z) = -g(\text{th}(Y, Z), X) + \eta(Y)g(X, Z) - \eta(Z)g(X, Y) \]
\[+ \cos^2 \theta(\eta(Z)g(P_2 Y, X) - \eta(Y)g(P_2 X, Z)). \]

Now, by using equation (27), we obtain
\[(\nabla_X T)Y = \cos^2 \theta(g(P_2 X, Y)\xi - \eta(Y)P_2 X) \]
which proves the assertion.

Theorem 6 — Let \(M \) be a proper pseudo-slant submanifold of a Sasakian manifold \(\bar{M} \) with slant angle \(\theta \), then
(i) \(M \) satisfies (26) if and only if
\[(\nabla_X TP_2)Y = \cos^2 \theta(g(P_2 X, Y)\xi - \eta(Y)P_2 X) \]
(ii) If \(M \) satisfies (26), then
\[
\nabla_X Z \in D_1 \oplus \langle \xi \rangle, \quad \nabla_X W \in D_2 \oplus \langle \xi \rangle
\]
for any \(X, Y \in TM, Z \in D_1 \) and \(W \in D_2 \).

Proof: For any pseudo-slant submanifold of Sasakian manifold \(\bar{M} \),
\(T = TP_2 \). Then statement
(i) follows from (26) and (16).

Suppose that \(M \) satisfies (26). Then by statement (i)
\[
(\nabla_X TP_2)Y = \cos^2 \theta (g(P_2X, Y)\xi - \eta(Y)P_2X).
\]
From above equation it is evident that
\[
P_1 \nabla_X TP_2 Y = 0 \text{ i.e., } \nabla_X TP_2 Y \in D_2 \oplus \langle \xi \rangle
\]
or, equivalently
\[
\nabla_X Z \in D_2 \oplus \langle \xi \rangle
\]
for any \(X \in TM \) and \(Z \in D_2 \). Then (ii) follows from (30).

Now, we have the following corollary:

Corollary 2 — Let \(M \) be a pseudo-slant submanifold of a Sasakian manifold \(\bar{M} \) such that \(M \)
satisfies (26). Then \(D_2 \oplus \langle \xi \rangle \) is integrable and leaves of distributions \(D_1 \oplus \langle \xi \rangle \) and \(D_2 \oplus \langle \xi \rangle \) are
totally geodesic in \(M \).

The corollary follows by statement (ii) of Theorem 6 and (11)(a).

Acknowledgement

The authors express their gratitude to the referee for some very pertinent corrections in the text of the paper which have considerably improved the mathematical contents and the presentation of the paper.

References

