INTERPOLATION BY GENERALIZED POLYNOMIALS

YEN Tzu Fu

Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

(Received 21 May 1980)

In this paper, the author studies the cubic spline interpolation and approximation by generalized polynomials with four terms. A theorem on existence and uniqueness is proved.

1. Introduction

Let \(a = x_0 < x_1 < \ldots < x_n = b \) be a partition on \([a, b]\). Let \(f \) be a function defined on \([a, b]\). A proof of the following theorem may be found in Rivlin (1969, pp. 106–107).

Theorem 1.1 — For given \(U_0, U_n \), there exists a unique function \(s(x) \in C^2 [a, b] \) such that in each interval \([x_{i-1}, x_i], i = 1, 2, \ldots, n \), \(s(x) \) agrees with a polynomial of degree at most 3 and \(s'(x) \) satisfies

\[
s(x_i) = f(x_i), \quad i = 0, 1, \ldots, n
\]

and

\[
s'(x_i) = u_i, \quad i = 0, n.
\]

Throughout this paper, \(n, a_0, a_1, \ldots, a_n \) will denote integers such that \(n > 1 \) and \(0 \leq a_0 < a_1 < \ldots < a_n \).

Definition 1.2 — Let \(\{g_\alpha\}_{\alpha=0}^{\infty} \) be a sequence of functions, real-valued, non-negative and continuous on \([0, R]\) and analytic on \((0, R]\) where \(R \) is a positive constant. Further suppose that \(g_\alpha \) is not a constant function if \(\alpha \geq 1 \), \(g_0 \) is not identically zero and \(g_\alpha(0) = 0 \) unless \(g_\alpha \) is a constant. Then \(\{g_\alpha\}_{\alpha=0}^{\infty} \) is said to have property \(\mathcal{D} \) if and only if the following hold:

(i) For every set of non-zero real numbers \(\{C_0, C_1, \ldots, C_n\} \) and for every choice of integers \(\{a_0, a_1, \ldots, a_n\} \) the number of zeros, counted with due regard to

Present address: Department of Mathematics, Indiana State University, Evansville, 8600 University Boulevard, Evansville, Indiana 47712, USA
multiplicity in \((0, R]\), of the sum \(\sum_{k=0}^{n} C_k g_{a_k}\) is at most equal to the number of variations of sign in the sequence \(\{C_0, C_1, \ldots, C_n\}\).

(ii) For every set of non-zero numbers \(\{C_0, C_1, \ldots, C_n\}\) and for every choice of integers \(\{a_0, a_1, \ldots, a_n\}\) the number of zeros, counted with due regard to multiplicity in \((0, R]\) of the sum \(\sum_{k=0}^{n} C_k g'_{a_k}\) is at most equal to the number of variations of sign in the sequence \(\{C_0, C_1, \ldots, C_n\}\). (cf. Bell and Shah 1975).

Definition 1.3 — Let \(\{g_{a}\}_{a=0}^{\infty}\) be a sequence of functions with property \(\mathcal{D}\). For any set of non-zero finite real numbers \(\{C_0, C_1, \ldots, C_n\}\), \(\sum_{k=0}^{n} C_k g_{a_k}\) is said to be a generalized polynomial of \((n + 1)\) terms.

The purpose of this paper is to replace the piecewise cubic polynomials in Theorem 1.1 by generalized polynomials of four terms, and to prove a theorem on existence and uniqueness.

2. **INTERPOLATION THEOREMS BY GENERALIZED POLYNOMIALS WITH FOUR TERMS**

Let \(\{g_{a}\}_{a=0}^{\infty}\) be a sequence of functions with property \(\mathcal{D}\) as defined in Definition 1.2. Let

\[
V(x) = [g_{a_0}(x) \quad g_{a_1}(x) \quad g_{a_2}(x) \quad g_{a_3}(x)]
\]

be a row vector with components \(g_{a_k}(x)\), \(g_{a_k} \in \{g_{a}\}_{a=0}^{\infty}\), \(k = 0, 1, 2, 3\).

Similarly, define row vectors \(V_i\), \(V'_i\) as follows,

\[
V_i = [g_{a_0}(x_i) \quad g_{a_1}(x_i) \quad g_{a_2}(x_i) \quad g_{a_3}(x_i)], \quad i = 0, 1, \ldots, n,
\]

\[
V'_i = [g'_{a_0}(x_i) \quad g'_{a_1}(x_i) \quad g'_{a_2}(x_i) \quad g'_{a_3}(x_i)], \quad i = 0, 1, \ldots, n,
\]

where \(0 < x_0 < \ldots < x_n \leq R\).

Let

\[
\begin{vmatrix}
V(x) \\
V_i \\
V'_{i-1} \\
V'_i
\end{vmatrix}
\]

be the determinant with row vectors \(V(x)\), \(V_i\), \(V'_{i-1}\), \(V'_i\) defined as above.
Lemma 2.1 — If \(x_{i-1} \) and \(x_i \) are not both double zeros for the same function
\[
g_{a_k}, \ k = 0, 1, 2, 3; \tag{1}
\]
then
\[
\begin{vmatrix}
V_{i-1} \\
V_i \\
V_{i-1}' \\
V_i'
\end{vmatrix} \neq 0 \quad \text{for } i = 1, 2, \ldots, n.
\]

Proof: By the property \(D \) in Definition 1.2 there exist no common zeros in \((0, R]\) for any two functions in the sequence \(\{g_a\}_{a=0}^{\infty} \). Otherwise the following generalized polynomial with no variation of sign
\[
g_{a_i}(x) + g_{a_k}(x)
\]
would have a zero in \((0, R]\) if \(g_{a_i}(x) \) and \(g_{a_k}(x) \) have a common zero in \((0, R]\). Thus we may assume that
\[
g_{a_0}(x_{i-1}) \neq 0.
\]
The property \(D \) also implies that the determinant
\[
\begin{vmatrix}
g_{a_0}(x_{i-1}) & g_{a_k}(x_{i-1}) \\
g_{a_0}(x_i) & g_{a_k}(x_i)
\end{vmatrix} = 0
\]
if and only if
\[
g_{a_k}(x_{i-1}) = 0 \quad \text{and} \quad g_{a_k}(x_i) = 0, \ k = 1, 2, 3. \tag{2}
\]
Moreover, there exists at most one function \(g_{a_k} \), \(0 < k \leq 3 \) such that (2) holds, since there exist no common zeros in \((0, R]\) for any two members in the sequence \(\{g_a\}_{a=0}^{\infty} \). Thus we may assume that
\[
\begin{vmatrix}
g_{a_0}(x_{i-1}) & g_{a_i}(x_{i-1}) \\
g_{a_0}(x_i) & g_{a_i}(x_i)
\end{vmatrix} \neq 0 \quad \text{for } l = 1, 2.
\]
Similar consideration as above leads to the conclusion that
\[
\begin{vmatrix}
g_{\alpha_0}(x_{i-1}) & g_{\alpha_1}(x_{i-1}) & g_{\alpha_k}(x_{i-1}) \\
g_{\alpha_0}(x_i) & g_{\alpha_1}(x_i) & g_{\alpha_k}(x_i) \\
g'_{\alpha_0}(x_{i-1}) & g'_{\alpha_1}(x_{i-1}) & g'_{\alpha_k}(x_{i-1})
\end{vmatrix} = 0, \quad 1 < k \leq 3
\]

if and only if
\[
g_{\alpha_k}(x_{i-1}) = 0, \quad g_{\alpha_k}(x_i) = 0 \quad \text{and} \quad g'_{\alpha_k}(x_{i-1}) = 0, \quad 1 < k \leq 3. \quad \text{...(3)}
\]

Also, there exists at most one \(g_{\alpha_k} \) \(0 < k \leq 3 \) satisfying (3).

If there exists none of \(g_{\alpha_k} \) \(k = 0, 1, 2, 3 \) satisfying (3), then define the function
\[
F(x) = \begin{vmatrix}
V_{i-1} \\
V_i \\
V_{i-1} \\
V(x)
\end{vmatrix} \quad \text{for} \quad x \in [x_0, x_n].
\]

Then \(F(x) \) is a generalized polynomial with at least two terms. Further
\[
\begin{vmatrix}
V_{i-1} \\
V_i \\
V_{i-1}' \\
V_i'
\end{vmatrix} = 0
\]

implies that \(F(x) \) has two double zeros \(x_{i-1} \) and \(x_i \), which contradicts the property \(D \) of the sequence \(\{g_{\alpha}\}_{\alpha=0}^{\infty} \).

In case there exists a function, say \(g_{\alpha_3} \), satisfying (3), then by (1)
\[
g'_{\alpha_3}(x_i) \neq 0.
\]

Define
\[
H(x) = \begin{vmatrix}
V_{i-1} \\
V_i \\
V(x) \\
V_i'
\end{vmatrix} \quad \text{for} \quad x \in [x_0, x_n].
\]
Again, that
\[
\begin{vmatrix}
 V_{i-1} \\
 V_i \\
 V'_i \\
 V''_i \\
\end{vmatrix} = 0
\]
leads to the same contradiction as above. Thus the lemma is proved.

Corollary 2.2 — If condition (1) of Lemma 2.1 holds and neither \(x_{i-1} \) nor \(x_i \) is a triple zero for
\[
g_{\alpha_k}, \ k = 0, 1, 2, 3.
\]

Then
\[
\begin{vmatrix}
 V_{i-1} \\
 V_i \\
 V'_i \\
 V''_i \\
\end{vmatrix} \neq 0 \quad \text{and} \quad \begin{vmatrix}
 V_{i-1} \\
 V_i \\
 V'_i \\
 V''_i \\
\end{vmatrix} \neq 0.
\]

Proof: If there exists none of \(g_{\alpha_k}, \ k = 0, 1, 2, 3; \) such that
\[
g_{\alpha_k}(x_{i-1}) = 0, \ g_{\alpha_k}(x_i) = 0 \quad \text{and} \quad g'_{\alpha_k}(x_i) = 0.
\]

Then
\[
\begin{vmatrix}
 V_{i-1} \\
 V_i \\
 V'_i \\
 V''_i \\
\end{vmatrix} = 0
\]
implies that the following generalized polynomial
\[
F(x) = \begin{vmatrix}
 V_{i-1} \\
 V_i \\
 V'_i \\
 V(x) \\
\end{vmatrix}
\]
has a zero \(x_{i-1} \) and a triple zero \(x_i \) which contradicts the property \(\mathcal{D} \) of the sequence \(\{g_{a_i}\}_{a=0}^\infty \).

Suppose there exists a function, say \(g_{a_3} \), such that (5) holds. By (4)

\[
g_{a_3}'(x_i) \neq 0.
\]

Then

\[
\begin{vmatrix}
V_{i-1} \\
V_i \\
V'_i \\
V''_i
\end{vmatrix} = 0
\]

implies that the following generalized polynomial

\[
H(x) = \begin{vmatrix}
V_{i-1} \\
V_i \\
V(x) \\
V''_i
\end{vmatrix}
\]

has a zero \(x_{i-1} \) and a triple zero \(x_i \) which contradicts the property \(\mathcal{D} \) of the sequence \(\{g_{a_i}\}_{a=0}^\infty \).

That

\[
\begin{vmatrix}
V_{i-1} \\
V_i \\
V''_{i-1} \\
V''_{i-1}
\end{vmatrix} \neq 0
\]

may be proved in a similar way.

Theorem 2.3 — For given \(0 < x_{i-1} < x_i \leq R, \ a_0, \ a_1, \ a_2, \ a_3 \) and constants \(f_{i-1}, \ f_i, \ f'_{i-1} \) and \(f''_i \), if \(x_{i-1}, x_i \) and \(g_{a_k}, \ k = 0, 1, 2, 3 \); satisfy (1) and (4), then there exists a unique generalized polynomial

\[
F(x) = \sum_{k=0}^{3} C_k g_{a_k}(x)
\]
such that

\[F(x_{i-1}) = f_{i-1}, \ F(x_i) = f_i, \ F'(x_{i-1}) = f'_{i-1} \text{ and } F'(x_i) = f'_i. \quad ... (6) \]

Proof: Let

\[
\Delta_{i-1} = \begin{vmatrix} V_{i-1} \\ V_i \\ V'_{i-1} \\ V'_i \end{vmatrix}.
\]

Define

\[
F(x) = \begin{vmatrix} V(x) \\ V_i \\ V'_{i-1} \\ V'_i \end{vmatrix} \frac{f_{i-1}}{\Delta_{i-1}} + \begin{vmatrix} V_{i-1} \\ V(x) \\ V'_{i-1} \\ V'_i \end{vmatrix} \frac{f_i}{\Delta_{i-1}} + \begin{vmatrix} V_{i-1} \\ V_i \\ V'_{i-1} \\ V'_i \end{vmatrix} \frac{f'_{i-1}}{\Delta_{i-1}} + \begin{vmatrix} V_{i-1} \\ V_i \\ V'_{i-1} \\ V'_i \end{vmatrix} \frac{f'_i}{\Delta_{i-1}}.
\]

By Lemma 2.1

\[\Delta_{i-1} \neq 0. \]

Clearly, \(F(x) \) is a generalized polynomial of the form \(\Sigma_{k=0}^3 C_k g_{a_k}(x) \) which satisfies (6). The uniqueness follows from the fact that

\[\Delta_{i-1} \neq 0. \]

Theorem 2.4 — Let \(0 < x_0 < ... < x_n \leq R \), let \(a_0, a_1, a_2, a_3 \) be given non-negative integers and \(f \in C'_{[x_0, x_n]} \). Suppose further that \(x_{i-1}, x_i, i = 1, 2, ..., n \); and \(g_{a_k}, k = 0, 1, 2, 3 \); satisfy (1) and (4) and any generalized polynomials \(g, h \) of the form \(\Sigma_{k=0}^3 C_k g_{a_k}(x) \) satisfy the following conditions:

(iii) If \(g(a) = 0, g'(a) = 0 \) and \(g(b) = 0 \), then there exists an odd number of inflection points between \(a \) and \(b \).

(iv) If \(g(a) = 0, g'(a) = 0, g(b) = 0 \) and

\[
h(a) = 0, h(b) = 0, h'(b) = 0
\]

then

\[
\left| \frac{g'(b)}{g'(b)} \right| \geq \left| \frac{h'(b)}{h'(a)} \right|.
\]
Then there exists a unique function \(F \in \mathcal{C}^2_{[x_0, x_n]} \) such that

\[
F(x_i) = f(x_i) \quad i = 0, 1, \ldots, n, \quad F'(x_0) = f'(x_0), \quad F'(x_n) = f'(x_n);
\]

and in each interval \([x_{i-1}, x_i] \), \(i = 1, 2, \ldots, n \), \(F \) agrees with a generalized polynomial containing at most four terms \(g_{a_0}, g_{a_1}, g_{a_2} \) and \(g_{a_3} \).

Remarks: (1) By the property (9) of the sequence \(\{g_x\}_{x=0}^\infty \), the generalized polynomial of four terms can have at most three zeros. Condition (iii) implies that for any double zero \(a \) and single zero \(b \) of such a generalized polynomial \(g \) the following holds:

\[
g''(a) \cdot g''(b) \leq 0 \quad \text{and} \quad g''(a) \neq 0.
\]

(2) The graphs of the generalized polynomials

\[
\frac{g(x)}{g'(b)} \quad \text{and} \quad \frac{h(x)}{h'(a)}
\]

in (iv) are as indicated in Fig. 1 and Fig. 2, respectively.

Fig. 1.

Fig. 2.

Condition (iv) implies that the curvature of \(\frac{g(x)}{g'(b)} \) at \(b \) is greater than that of \(\frac{h(x)}{h'(a)} \) at \(b \).

Proof of Theorem 2.4 — Define

\[
F(x) = \begin{vmatrix}
V(x) & V_{i-1} \\
V_i & V'_{i-1} \\
V'_{i} & \frac{f_i}{\Delta_{i-1}} + \frac{f_{i-1}}{\Delta_i}
\end{vmatrix} + \begin{vmatrix}
V_{i-1} \\
\frac{U_{i-1}}{\Delta_{i-1}} \\
\frac{U_i}{\Delta_i}
\end{vmatrix} + \begin{vmatrix}
V_i \quad V'(x) \\
V'_{i} \quad V'_{i-1} \\
\frac{V'_i}{V(x)} \quad V'(x)
\end{vmatrix}
\]

for \(x \in [x_{i-1}, x_i] \) \(\ldots(7) \)

where

\[
\Delta_{i-1} = \begin{vmatrix}
V_{i-1} \\
V_i \\
V'_{i-1} \\
V'_i
\end{vmatrix} \quad [i = 1, 2, \ldots, n]
\]
and \(f_i = f(x_i), \ i = 0, 1, \ldots, n; \ U_0 = f'(x_0), \ U_n = f'(x_n) \) with \((n - 1)\) quantities \(U_i \) \((i = 1, 2, \ldots, (n - 1))\) to be determined.

Upon equating \(F''(x_i) \) as calculated on \([x_{i-1}, x_i]\) and \([x_i, x_{i+1}]\), we have the following \((n - 1)\) linear equations:

\[
\begin{vmatrix}
V_i^* \\
V_i \\
V_{i-1} \\
V_i^* \\
\end{vmatrix}
= \begin{vmatrix}
V_{i+1}^* \\
V_i \\
V_i^* \\
V_{i+1} \\
\end{vmatrix}
\begin{vmatrix}
f_{i-1} \\
\frac{f_i}{\Delta_i} \\
\frac{U_{i-1}}{\Delta_{i-1}} \\
U_i \\
\end{vmatrix}
\begin{vmatrix}
V_{i-1} \\
V_i \\
V_i^* \\
V_{i-1} \\
\end{vmatrix}
\begin{vmatrix}
V_{i+1} \\
V_i^* \\
\frac{U_i}{\Delta_i} \\
V_i^* \\
\end{vmatrix}
\begin{vmatrix}
V_i \\
V_{i+1} \\
V_i^* \\
V_i \\
\end{vmatrix}
\begin{vmatrix}
V_i \\
V_{i+1} \\
V_i \\
V_i^* \\
\end{vmatrix}
\]

\(i = 1, 2, \ldots, (n - 1). \) \(\ldots(8) \)

The matrix of the system \((8)\) is tridiagonal with elements

\[
a_{i,j-1} = \frac{V_{j-1}}{\Delta_{i-1}}, \quad j = 2, 3, \ldots, (n-1)
\]

\[
a_{i,j} = \begin{vmatrix}
V_{j-1} \\
V_j \\
V_j^* \\
V_{j-1} \\
\end{vmatrix}
\begin{vmatrix}
V_j \\
V_{j+1} \\
V_j^* \\
V_j \\
\end{vmatrix}
\]

\(j = 1, 2, \ldots, (n-1) \) and

\[
a_{i,j+1} = -\frac{V_j}{\Delta_j}, \quad j = 1, 2, \ldots, (n-2)
\]
Each of the following four generalized polynomials

\[
g_1(x) = \begin{vmatrix} V_{j-1} \\ V_j \\ V'_{j-1} \\ V(x)_{j-1} \end{vmatrix}, \quad j = 1, 2, \ldots, (n-1); \quad g_2(x) = -\begin{vmatrix} V_j \\ V_{j+1} \\ V(x) \\ V'_{j+1} \end{vmatrix}, \quad j = 1, 2, \ldots, (n-1); \]

\[
h_1(x) = \begin{vmatrix} V_{j-1} \\ V_j \\ V(x) \\ V'_{j-1} \end{vmatrix}, \quad j = 2, 3, \ldots, (n-1); \quad h_2(x) = -\begin{vmatrix} V_j \\ V_{j+1} \\ V(x) \\ V'_{j} \end{vmatrix}, \quad j = 1, 2, \ldots, (n-2);
\]

...(10)

has a double and a single zero with the derivative at the single zero either 1 or -1. The graphs of \(g_1, g_2, h_1\) and \(h_2\) at their zeros are shown in (a), (b), (c) and (d), Fig. 3, respectively.

\[\begin{array}{c}
\text{(a)} \\
\text{(b)} \\
\text{(c)} \\
\text{(d)} \\
\end{array}\]

\text{Fig. 3.}

By applying \(\text{(iii)}\) to \(g_1, g_2, h_1\) and \(h_2\), we have

\[
g_1'(x_j) \geq 0 \quad j = 1, 2, \ldots, (n-1); \quad g_2'(x_j) \geq 0 \quad j = 1, 2, \ldots, (n-1)
\]

\[
h_1'(x_j) > 0 \quad j = 2, 3, \ldots, (n-1); \quad h_2'(x_j) > 0 \quad j = 1, 2, \ldots, (n-2)
\]

...(11)

By applying \(\text{(iv)}\) to \(g_2\) and \(h_k(k = 1, 2)\), we have
\[g_1^*(x_i) = \begin{cases} \frac{g_1^*(x_i)}{g'(x_i)} & \frac{h_1^*(x_i)}{h'_1(x_{j-1})} = h_1^*(x_i), j = 2, 3, \ldots, (n - 1); \\ \frac{g_1^*(x_i)}{g_2^*(x_i)} & \frac{h_1^*(x_i)}{h_2^*(x_{j+1})} = h_1^*(x_i), j = 1, 2, \ldots, (n - 2) \end{cases} \]

That every entry in the matrix of the linear system (8) is non-negative follows from (9), (10) and (11). (12) implies that the matrix is diagonally dominant. Since a tridiagonal, diagonally dominant with non-negative entries is regular (see Rivlin 1969, pp. 107), system (8) has unique solution \{U_1, U_2, \ldots, U_{n-1}\}. With \(U_0 = f'(x_0), U_n = f'(x_n) \) and \(f_i = f(x_i) \) \(i = 0, 1, 2, \ldots, n \) the function (7) is uniquely constructed which satisfies every requirement for Theorem 2.4. Thus the theorem is proved.

(3) Example — Let \(f(x) = \sin x, x_0 = \frac{\pi}{10}, x_1 = \frac{\pi}{2}, x_2 = \pi, g_{\alpha_0}(x) = 1 \),

\[g_{\alpha_1}(x) = x^{1/4}, g_{\alpha_2}(x) = x^{2/3}, g_{\alpha_3}(x) = x^{4/5}. \]

The generalized polynomial constructed as in Theorem 2.4 is the following (coefficients are rounded off at fifth digit):

\[F(x) = \begin{cases} 8.11367 - 23.19826x^{1/4} + 48.84553x^{2/3} - 32.85175x^{4/5} & x \in \left[\frac{\pi}{10}, \frac{\pi}{2} \right] \\ -0.28215 - 5.74643x^{1/4} + 26.47984x^{2/3} - 19.55697x^{4/5} & x \in \left[\frac{\pi}{2}, \pi \right] \end{cases} \]

ACKNOWLEDGEMENT

The author expresses his sincere thanks to Professor S. M. Shah for his valuable suggestions.

REFERENCES

