ESSENTIALLY (R), ESSENTIALLY (H₁) AND ESSENTIALLY SPECTRALOID OPERATORS ON HILBERT SPACE

J. D. ACHARYA AND I. H. SHETH

Department of Mathematics, University School of Sciences,
Gujarat University, Ahmedabad 380009

(Received 24 January 1980; after revision 25 August 1980)

Sufficient conditions for an operator to be essentially (R), essentially (H₁) and essentially spectraloid are obtained. It is shown that R is a proper subset of e(R), e(G₁) is a proper subset of e(H₁), but classes e(R) and e(G₁), e(H₁) and H₁, e(S) and S are non-comparable.

§1. Let \(B(H) \) denote the set of all bounded linear transformations from Hilbert space \(H \) into \(H \). Let \(\sigma(T), \pi_{00}(T), \bar{\sigma}(T), \text{ con } \sigma(T), \bar{W}(T), r(T) \) and \(|W(T)| \) respectively denote the spectrum, the set of all isolated points in \(\sigma(T) \) that are eigen values of finite multiplicity, the hen-spectrum [complement of the unbounded component of the complement of \(\sigma(T) \) (Fujii 1971, 1973)] the convex hull of the spectrum, the closure of the numerical range, the spectral radius and the numerical radius of an operator \(T \). An operator

\[
T \in R \text{ if } \| (T - zI)^{-1} \| = 1/d(z, W(T)), z \notin \bar{W}(T) \quad \text{(Luecke 1972b)}
\]

and

\[
T \in H₁ \text{ if } \| (T - zI)^{-1} \| = 1/d(z, \bar{\sigma}(T)), z \notin \bar{\sigma}(T) \quad \text{(Fujii 1971, 1973)}
\]

Let \(\pi \) be the quotient map from \(B(H) \) onto the Calkin algebra \(B(H)/K \), where \(K \) denotes the set of all compact operators in \(B(H) \). An operator \(T \in B(H) \) is essentially \(R, H₁ \) or a spectraloid according as \(\pi(T) \) is an element of \(R, H₁ \) or spectraloid. We denote each of these sets by \(e(R), e(H₁) \) and \(e(S) \) respectively. Let \(\sigma_e(T), \sigma_e(T), W_e(T), \bar{\sigma}_e(T), r_e(T) \) and \(|W_e(T)| \) denote the essential spectrum, the left essential spectrum, the essentially numerical range (Fillmore et al. 1972), the essential hen-spectrum, the essential spectral radius and the essential numerical radius of an operator \(T \).

Luecke (1975) proved the following basic results:

Theorem A — If \(T = A \oplus B \) on \(H \oplus H \), then

(i) \(\sigma_e(T) = \sigma_e(A) \cup \sigma_e(B) \)

(ii) \(W_e(T) = \text{ con } (W_e(A) \cup W_e(B)) \)

(iii) \(\| \pi(T) \| = \max \{ \| \pi(A) \|, \| \pi(B) \| \} \).
Using these properties sufficient conditions for an operator to be essentially G_1 and essentially convexoid are obtained. It is further shown by Luecke (1975) that $e(G_1)$ and G_1; $e(C)$ and C, are non-comparable, where $e(G_1)$ and $e(C)$ denote the classes of essentially G_1 and essentially convexoid operators.

In this note, we obtain sufficient conditions for an operator to be essentially R, essentially H_1 and essentially spectraloid. It is remarkable to note that class R is a proper subset of $e(R)$, while classes $e(R)$ and $e(G_1)$, $e(H_1)$ and H_1, $e(S)$ and S are non-comparable.

§2. It is known (Acharya 1980) that if $T = A \oplus B$ be defined on $H \oplus H$, then

(i) $B \in R$ with $\bar{W}(A) \subseteq \bar{W}(B)$ implies that $T \in R$

(ii) $B \in H_1$ with $\bar{W}(A) \subseteq \bar{\sigma}(B)$ implies that $T \in H_1$.

We have the sufficient conditions for an operator to be in $e(R)$ and $e(H_1)$ as follows:

Theorem 1 — If $T = A \oplus B$ on $H \oplus H$, where B is essentially R with $W_e(A) \subseteq W_e(B)$ then T is essentially R.

Theorem 2 — If $T = A \oplus B$ on $H \oplus H$, where B is essentially H_1 with $W_e(A) \subseteq \widetilde{\sigma}(B)$ then T is essentially H_1.

Proofs for both the Theorems can be constructed on the same lines as in Luecke (1975, Theorem 3). For completeness we give the proof for Theorem 2 as follows:

Proof: Here $\widetilde{\sigma}(T) = \widetilde{\sigma}(A) \cup \widetilde{\sigma}(B) = \widetilde{\sigma}(B)$.

For $z \notin \widetilde{\sigma}(B)$, $\| (\pi(A) - zI)^{-1} \| \leq 1/d(z, W_e(A))$

$\leq 1/d(z, \widetilde{\sigma}(B))$.

Now $\| (\pi(T) - zI)^{-1} \|$ = max \{ $\| (\pi(A) - zI)^{-1} \|$, $\| (\pi(B) - zI)^{-1} \|$ \}

= max \{ $\| (\pi(A) - zI)^{-1} \|$, $1/d(z, \widetilde{\sigma}(B))$ \}

= $1/d(z, \widetilde{\sigma}(B))$

= $1/d(z, \widetilde{\sigma}(T))$.

Therefore, T is essentially H_1.
If $T = A \oplus B$ on $H \oplus H$ and B is a spectraloid with $|W(A)| \leq r(B)$, then T is spectraloid (Acharya 1980). We have the following:

Theorem 3 — If $T = A \oplus B$ on $H \oplus H$ and B is essentially spectraloid with $|W_e(A)| \leq r_e(B)$, then T is essentially spectraloid.

Proof: Since B is essentially spectraloid,

$$r_e(B) = |W_e(B)|.$$

Now,

$$r_e(T) = \max \{r_e(A), r_e(B)\} = r_e(B)$$

and

$$|W_e(T)| = \max \{|W_e(A)|, |W_e(B)|\} = |W_e(B)| = r_e(B).$$

Thus, $r_e(T) = |W_e(T)|$. Hence T is essentially spectraloid.

§3. According to Putnam (1968)

$$\partial \sigma(T) \subseteq \sigma_{le}(T) \cup \pi_{oo}(T)$$

where ∂M denotes the boundary of a set M. It is known that $T \in R$ if and only if $\partial W(T) \subseteq \sigma(T)$ (Luecke 1972b). It is not difficult to observe that $T \in e(R)$ if and only if $\partial W_e(T) \subseteq \sigma_e(T)$. Now we use these results to show the following:

Theorem 4 — Class R is a proper subset of $e(R)$.

Proof: Let $T \in R$. Hence $\partial W(T) \subseteq \sigma(T)$.

Now

$$\partial W(T) \subseteq \partial \sigma(T) \subseteq \sigma_{le}(T) \cup \pi_{oo}(T) \quad \text{(Putnam 1968)}.$$

Further $\partial W(T) \cap \pi_{oo}(T) = \emptyset$. Hence

$$\partial W(T) \subseteq \sigma_{le}(T) \subseteq \sigma_e(T) \subseteq W_e(T) \text{ and } W_e(T)$$

is a convex set which is again a subset of $W_e(T)$. Therefore, $\partial W(T) = \partial W_e(T)$ or $\partial W_e(T) \subseteq \sigma_e(T)$, i.e. $T \in e(R)$.

To show that this inclusion is proper, consider \[
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}
\oplus 0 \text{ on } H = M \oplus M^\perp,
\]

where dimension of M is two. Here $\pi(T) = 0$ so that T is essentially R, but $T \notin R$.

Using the technique of Luecke (1975, Theorem 10) we give a non-trivial example to show the following:

Theorem 5 — $e(G_3)$ is a proper subset of $e(H_3)$.

Proof: Consider $T = A \oplus N$ on $(M_1 \oplus M_2) \oplus M_3$, (each M_i has infinite dimensions) with $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and N, a normal operator with $\sigma(N) = C$, where C is unit circle in the complex plane.
Now
\[\| \pi(T - zI)^{-1} \| \]
\[= \max \{ \| \pi(A - zI)^{-1} \|, \| \pi(N - zI)^{-1} \| \} \]
\[\geq \| \pi(A - zI)^{-1} \| \]
\[= \| (\pi(A) - z)^{-1} \| \]
\[= \left\| \left(\begin{array}{cc} -1/z & 1/z^2 \\ 0 & -1/z \end{array} \right) \right\| \]
\[= \left\| \left(\begin{array}{cc} -1/z & 1/z^2 \\ 0 & -1/z \end{array} \right) \right\| \]
\[\geq \frac{1}{|z|^2} \]

and \(\sigma_c(T) = \{0\} \cup C \). Choose \(z = 1/10 \notin \sigma_c(T) \).

Then \(1/d(z, \sigma_c(T)) = 10 \). But \(\| \pi(T - zI)^{-1} \| > 100 \). Hence \(T \notin e(G_1) \). However \(\partial W_c(T) \subseteq \sigma_c(T) \) implies that \(T \in e(R) \subseteq e(H_1) \).

Corollary 1 — Classes \(e(G_1) \) and \(e(R) \) are non-comparable.

With the help of technique given in examples in Theorems 6 and 7 of Luecke (1975) it is easy to see that:

Corollary 2 — Classes \(H_1 \) and \(e(H_1) \) are non-comparable.

Corollary 3 — Classes \(S \) and \(e(S) \) are non-comparable.

ACKNOWLEDGEMENT

The authors are thankful to the referee for his valuable suggestions.

REFERENCES

