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Euler’s totient function ¢(n) can be defined for all positive integral values of
n by the relations:
1) 4H=1:
and for any prime pand # > 1
(2) ¢(pu) = pd(u) or (p — 1) é()
according as p does or does not divide «.

The simple reduction formula (2) which is so suitable for computing the values
of ¢(n), does not appear to have been stated before.

A method of finding all the elements of the set
¢~ m) = {n: $(n) = m}

is described, and the conjecture that the inequality
)< m

has about twice as many even solutions than it has odd ones is shown to be
true. It is also shown that sets ¢~2(m) with all elements even exist.

1. INTRODUCTION

In what follows, small letters denote positive integers; p’s denote primes:
E denotes an empty set; and if 4 is any set, then

tA = {ta:a € A}. (L)

For any given positive integer n, Euler’s totient function ¢(n) denotes the number of
positive integers which are prime to » and do not exceed n.

The following properties of ¢(n) are well-known and are stated here for ready
reference:

@ () =1=42). w(1.2)
(ii) ¢(n) is multiplicative, i.e. for (m,, n,) = 1,
$(mny) = ¢(ny) (). ..(1.3)
(iii) For any prime p,
#(p?) = pi(p — D). (1.4)
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From (1.3) and (1.4), it follows that
 dm=nil (1 —-p), (1.5)
pln

(iv) ¢(n) is even for each n > 3. ...(1.6)
This means that there is no x for which
dx)=2t+1,¢t > 1,
On the other hand,
$(x) =2, t>1
may or may not have any solution for a given ¢ and if it has a solution, it may not be
unique.
Thus ¢(x) = 6 has exactly four solutions viz, x = 7, 9, 14, 18; while there is no x for
which ¢(x) = 14,
(v) If for some n, ¢(n) = m, then
#(2n) = m if and only if n is odd. (L7

2. A RepucTiON FORMULA FOR ¢(n)
We have ¢(1) = 1:
for n > 2, we can write
n= pu

where p is a prime divisor of # and u is some integer > 1. Then it is easy to see that
$(n) = pé(u) or (p — 1) $(u) w(2.)
according as p does or does not divide u.

(In’practice it is best to take p as the smallest prime divisor of n.)

With ¢(1) = 1, (2.1) completely defines $(n) for all positive integral values of a.
Actually, (2.1) provides a simple reduction formula for ¢(n). This formula does not
appear to have been given before.

After the author had computed values of ¢(n) for n < 7500 manually, Ajeet
Singh of the Moti Lal Engineering College, Allahabad and Nirmal Roberts of the
Computer Centre at the I.1.T., Kanpur, were able to write independently programmes
for the computation of ¢(n). These were based directly on (2.1). Finally, Nirmal
produced a table of values of ¢(n) for n <{ 25000 which is a considerable extension
of available tables,

3. THE SET ¢~1(m)
For any given m, we define ¢—1(m) by the relation:
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71 (m) = {n: §(n) = m}. ..(3.1)
This set is empty for all odd values of m > 1 and for many even values of m also,
Our interest will be mainly in those values of m for which the set is non-empty.

Theorem 1 — Any non-empty set $~2(m) is bounded both above and below,
PrROOF : Let n be any element of ¢—4(m).

Evidently, then m < n.

The set is therefore, bounded below.

Again, from (1.5), we have

n/¢(n) =pfllnp/(p - 1) .(3.2)
< I plp—1. (3.3)
(@-H|m

This follows from the fact that if p | n, then (p — 1) | m; butif (p — 1) | m, then p
may or may not divide n.

Hence, no n for which ¢(n) = m, can exceed U(m) where

Umy=m. T p/(p—1). ...(3.4)
(=1 [m

This completes the proof of the theorem.
Corollary — If g is the largest odd element of ¢—1(m), then
q < U(m)/2. ...(3.5)
(This follows from the fact that 2g is also an element of ¢-1(m).)

We can find another upper bound for n/¢(n) as follows. Let P denote the product
of the first k£ primes

PysPy,Pss s P}
with p} =2, p¥ =>3, p; = 5, and so on.
Then for any » for which Py < n < Px,,, we have
nfg(n) < Pif/(pf — D (pF — 1) .. (pF— 1) ..(3.6)

This follows from the fact that no n in the said interval can have more than k distinct
prime divisors, '

The sign of equality actually holds in (3.6) for # = P: and may be for several other
numbers too,
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Results (3.4) and (3.6) can often be used together with advantage. Take
m = 192 for example. Then using (3.4), we find that no element of ¢~'(m) can
exceed

192.(2/1) (3/2) (5/4) (7/6) (13/12) (17/16) (97/96) (193/192)
which is just less than 983.
Since 983 lies between P, and P; and for any » in this interval
njd(m) < (2/1) (3/2) (5/4) (7/6),
no element of ¢~1(192) can exceed 840.
Our tables show that 840 is actually the largest element of ¢-1(192) (this is, however,
purely a matter of chance and we cannot assert that this will always be so). For

m = 400, (3.4) gives 1820 as an upper bound for the set ¢-1(400). Use of (3.6)
improves it to 1750 while the largest element of 4-1(400) is 1650.

4. DETERMINATION OF ¢~ 1(m)

Let n be an element of ¢-1(m) for a given m. Assume that p is the least prime
divisor of n, Let

n = pbu, where (u, p) = 1.
This clearly implies that » has no prime divisor < p.

Evidently, we have

m = ¢(n) = ¢(p%) $(u). ..(41)
For (4.1) to hold, it is necessary that our p be such that
(p—1|m C..(4.2)

and u belong to that subset of ¢—1(m/é(p?)) which consists of those of its elements
which have no prime divisor  p. Such a subset can conveniently be denoted by

¢} (m/$(p%)). Tt will be clear that every element of

Pl m/¢(pY) ..(4.3)
gives a solution of the equation
$(x) = m. . (4.4)

In fact, (4.3) provides all those solutions of (4.4) which have p as their least prime
divisor and p4 as the highest power of p which divides them.

Letting p run through all those primes which satisfy condition (4.2) and d
through all those values for which ¢(p¢) divides m, all the solutions of (4.4) can be
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obtained. These determine ¢~2(m). For any prime p satisfying (4.2), we can ignore
all those values of d for which m/$(p3) is an odd number > 1.

For reasons which will be clear a little later, it will be best to consider values of
p in descending order of magnitude and those of 4 in an ascending order,

The following example will clarify the procedure,

Example — Take m = 576.

To get the primes p for which (p — 1) | m, we write out all the divisors of m; add 1
to each one of them and retain the primes alone. Now, 576 = 28.32, the divisors of

576, therefore are:

1,2,4,8,16,32,64; 3,6, 12, 24, 48, 96, 192; 9, 18, 36, 72, 144, 288, 576.

Adding 1 to each of these, we get
2,3,5,9,17,33,65; 4,7,13,25,49,97,193; 10, 19, 37, 73, 145, 289, 577.

The primes in this list arranged in descending order are:
577,193, 97, 73, 37, 19, 17,13, 7, 5, 3, 2.

We assume that sets ¢—*(x) are available for all x < 576. Those that we shall need
are:
$1(x)
{1,2}
{1,9, 14, 18}
{15, 16, 20, 24, 30}
16 {17, 32, 34, 40, 48, 60}
18 {19, 27, 38, 54}
32 {51, 64, 68, 80, 96, 102, 120}
36 {37, 57, 63, 74, 76, 108, 114, 126}
48 {65, 104, 105, 112, 130, 140, 144, 156, 168, 180, 210}
72 {73, 91, 95, 111, 117, 135, 146, 148, 152, 182, 190, 216, 222, 228, 234, 252,
270}
96 {97, 119, 153, 194, 195, 208, 224, 238, 260, 280, 288, 306, 312, 336, 360,
390, 420}
144 {185, 219, 273, 285, 292, 296, 304, 315, 364, 370, 380, 432, 438, 444, 456,
468, 504, 540, 546, 570, 630}

288 {323, 365, 455, 459, 555, 584, 585, 592, 608, 646, 728, 730, 740, 760, 864,
876, 888, 910, 912, 918, 936, 1008, 1080, 1092, 1110, 1140, 1170, 1260}

00 O = ¥
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Our calculations can now be presented in the following tabular form:

4 d m|$(p%) pi$.(m[$(p?))
577 1 1 577 {1} = {577}
193 1 3 Discarded
97 1 6 97. E
73 1 8 73. E
37 1 16 37. E
19 1 32 19. E
17 1 36 17 {37} = {629}
13 1 48 13. E
7 1 9 7 {97} = {679}
5 1 144 5 E
3 1 288 3 {323, 365, 455} = {969, 1095, 1365}
3 2 96 9 {97, 119} = {873, 1071}
3 3 32 27. E

At the next step, we need all the odd elements of ¢-1(576) and these have already
become available, This explains why we decided to consider the primes in descending
order.

2 1 576 2 {577, 629, 679, 969, 1095, 1365, 873, 1071}
= {1154, 1258, 1358, 1938, 2190, 2730, 1746, 2142}
2 2 288 4 {323, 365, 455, 459, 555, 585}
= {1292, 1460, 1820, 1836, 2220, 2340}
2 3 144 8 {185, 219, 273, 285, 315}
= {1480, 1752, 2184, 2280, 2520}
2 4 72 16 {73, 91, 95, 111, 117, 135}
= {1168, 1456, 1520, 1776, 1872, 2160}
2 5 36 32 {37, 57, 63}
— {1184, 1824, 2016}
2 6 18 64 {19, 27}

= {1216, 1728}

We have thus obtained all the elements of ¢-1(576). Arranging these in order, we
can record them in our table.

It is noteworthy that in our calculations, the even elements of sets recorded earlier,
play no role.

Note: Let Cy(x) denote the set of odd and C,(x) that of even elements of ¢!(x), then we
leave it to the reader to show that
Co(2m) = 2{C,(2m) U C(m)}.
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The importance of this observation will be realized in the next section.

5. THE NUMBER OF SOLUTIONS OF THE EQUATION ¢{x) = m

For any given m, let v,(m) and v.(m) denote respectively the number of the odd
and the even solutions of the equation

$(x) = m. .(5.1)

Then from the example in the preceding section, it will be clear that for m = 2¥m,,
where m, is an odd number > 1, we have

Ve(2¥mo) = vo(2¥m,) + vo(2¥1mo) + ... + vo(2mo) + Vo(mo)
= v(2¥m,) + v.(2*1m,), k > 1. ..(5.2)
For k = 0, we have
Ve(mo) = 0 = vo(m,), m, > 3;
v(1) = 1 = n,(1).

Here, we must state that there is no method of finding v.(m) except by actual com-
putation, as explained in the preceding section. For m = 2%, we have, however, the
following:

Theorem 2 — v,(2%¥) = 1, if 0 < k < 31;
= 0, otherwise.

The proof depends on a well-known property of Fermat’s numbers.

PROOF : The divisors of 2% are
1,2,4, ..,2%
The only values of j for which 27 4 1 is a prime are
j=01,2,4,8,16.
Since 2* has no prime divisor other than 2, any odd number » for which
$(n) = 2*

must be a product of distinct odd primes of the form 2/ + 1. The theorem is true
for k = 0, and every integer from 1 to 31 has a unique partition into the elements
1,2, 4,8, 16. Hence the first part of the theorem follows. The second part also

follows if we accept that the Fermat numbers 2" + 1 are all composite for n > 5,
In case this conjecture is untrue, the theorem will have to be stated in the form

v(2%) = 1 or 0
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for all values of k including 0. In particular it is zero for k£ == 32 and 1 for each
k < 31

Example — The only odd solution of the equation
$x) = 2
isx = (28 4+ )22+ 1) 2t + 12 + D
6. THE INEQUALITY ¢(x) < m
In this section we assume that m is not too small.

Let V,(m) and V,(m) denote respectively the numbers of odd and even solutions
of the inequality

$(x) < (m).
Then from (5.2), we immediately have
V(m) + Vo(2m) = V.(2m). ...{6.1)
From our tables it appears that real numbers « and B exist such that
Vo(x) == ax and V(x) = Bx
(== means approximately equal to).
Assuming this to be true, (6.1) will give
Bx 4+ 2ax = 28x,
Hence = 2,
This means that the number of even solutions of ¢(x) < m is about twice the number
of its odd solutions.
Tables show that
o = 0.648; and g == 1.295
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A specimen page from the Table of values of V,, V,
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m V, Ve m V, Ve m V, Ve
1408 913 1828 1600 1037 2085 1804 1174 2348
1416 914 1830 1606 1038 2086 1806 1175 2349
1422 915 1831 1608 1041 2089 1808 1175 2353
1424 916 1835 1612 1042 2090 1810 1177 2354
1426 917 1836 1616 1043 2092 1812 1178 2356
1428 920 1839 1618 1044 2093 1820 1179 2358
1432 922 1843 1620 1051 2101 1822 1180 2359
1436 923 1845 1624 1053 2104 1824 1182 2366
1438 924 1846 1626 1054 2105 1830 1183 2367
1440 944 1898 1632 1060 2119 1836 1188 2373
1446 0945 1899 1636 1061 2120 1840 1192 2382
1450 946 1900 1640 1065 2126 1846 1193 2383
1452 949 1904 1644 1066 2128 1848 1197 2391
1456 950 1905 1652 1067 2130 1856 1200 2403
1458 952 1907 1656 1076 2144 1860 1204 2408
1464 954 1912 1660 1077 2145 1864 1205 2411
1470 955 1913 1662 1078 2146 1866 1206 2412
1472 956 1919 1664 1079 2152 1870 1207 2413
1476 959 1923 1666 1080 2153 1872 1220 2437
1480 961 1925 1668 1081 2154 1876 1221 2438
1482 962 1926 1672 1082 2157 1878 1222 2439
1484 963 1928 1676 1083 2159 1880 1223 2441
1486 964 1929 1680 1100 2192 1888 1224 2442
1488 966 1933 1692 1103 2195 1892 1225 2444
1492 927 1934 1696 1105 2201 1896 1227 2446
1498 968 1935 1698 1106 2202 1900 1229 2448
1500 972 1940 1704 1107 2204 1904 1231 2454
1510 973 1941 1708 1108 2205 1906 1232 2455
1512 983 1960 1712 1109 2207 1908 1234 2457
1520 985 1966 1716 1111 2210 1912 1236 2461
1522 986 1967 1720 1114 2215 1920 1248 2512
1528 987 1970 1722 1115 2216 1930 1249 2513
1530 988 1971 1724 1116 2218 1932 1253 2518
1536 994 2004 1728 1130 2266 1936 1254 2519
1540 995 2005 1732 1131 2267 1940 1255 2521
1542 996 2006 1740 1133 2269 1944 1264 2537
1544 997 2008 1746 1134 2270 1948 1265 2538
1548 998 2009 1752 1139 2278 1950 1266 2539
1552 1000 2013 1758 1140 2279 1952 1267 2541
1558 1001 2014 1760 1146 2297 1960 1270 2546
1560 1008 2024 1764 1149 2301 1964 1271 2548
1566 1009 2025 1768 1150 2304 1968 1274 2555
1568 1010 2029 1772 1151 2306 1972 1275 2556
1570 1011 2030 1776 1155 2315 1978 1276 2557
1572 1014 2034 1780 1156 2316 1980 1283 2565
1578 1015 2035 1782 1157 2317 1986 1284 2566
1582 1016 2036 1786 1158 2318 1992 1289 2576
1584 1029 2063 1788 1159 2319 1996 1290 2577
1592 1030 2065 1792 1162 2334 1998 1291 2578
1596 1031 2066 1800 1173 2347 2000 1295 2589




