A STUDY OF COST VARIATIONS IN EXTREME POINT MATHEMATICAL PROGRAMMING PROBLEMS*

H. C. BAKHSHI

Motilal Nehru College (University of Delhi), Delhi

AND

M. C. PURI

Hans Raj College (University of Delhi), Delhi 110007

(Received 15 June 1978; after revision 27 August 1979)

Equipped with an optimal solution to a given extreme point mathematical programming problem (E.P.M.P.P.) (Kirby et al. 1972a, b) we test here the sensitivity of this solution subject to variations in the cost (price) vector. A critical perturbation in the cost (price) vector beyond which optimality of the given solution is lost has been found. In support of the theory developed, a numerical example has also been added.

INTRODUCTION

In Kirby et al. (1972a) an extreme point mathematical programming problem (E.P.M.P.P.)

Max. CX

subject to $AX = b$...

and X is an extreme point of

$DX = d$

$X \geq 0$

has been solved by ranking extreme points of the linear programming problem

Max. CX

subject to $DX = d$...

$X \geq 0$

systematically starting from optimal extreme point, till feasibility in $AX = b$ is achieved.

In the above A is $m \times n$, b is $m \times 1$, D is $p \times n$, d is $p \times 1$, X and 0 are $n \times 1$ matrices.

*This paper was presented at the 10th Annual Convention of the Operations Research Society of India held at New Delhi in 1977.
Many practical problems can be tackled successfully by techniques evolved for solving the extreme point mathematical programming problem (P.1) (Kirby and Scobey 1970). With a very common phenomenon of ever changing prices, a post optimal study of an E.P.M.P.P. is obviously an important study of problems we are frequently made to face. For this we test sensitivity of a linear programming problem (Barnett 1962, Courtillot 1962, Shetty 1961) with one additional condition that the resulting solution be achieved at an extreme point of a given convex polyhedron.

Let \(X^0 \) be an extreme point of (P.2) which gives an optimal solution of (P.1), and let \(CX^0 = Z_0 \). Let cost vector \(C \) be changed to \(C^+ = C + \varphi f \), where \(\varphi \) is a non-negative scalar and \(f \) is an arbitrary but specified vector. Clearly changes in \(C \) for a specified \(f \) are controlled by values of \(\varphi \).

It being wasteful to solve the perturbed problem from scratch, we give here the possibilities and means of getting from optimal solution of the original E.P.M.P.P., an optimal solution of the E.P.M.P.P. with changed prices. Critical value of \(\varphi \) (called \(\varphi_c \)), beyond which any change in \(C \) would render \(X^0 \) non-optimal has been found. Again, when \(\varphi > \varphi_c \) i.e. when the original optimal solution \(X^0 \) is rendered non-optimal, a procedure for reaching an optimal solution of the E.P.M.P.P. with changed cost vector i.e. \(C^+ \), has been evolved.

Throughout this paper we have proceeded with an assumption of no-degeneracy, which is justifiable as almost all practical problems are non-degenerate.

PROCEDURE

Introduce a cut \(CX \leq Z_0 \) and consider the linear programming problem

\[
\begin{align*}
\text{Max. } & CX \\
\text{s.t. } & DX = d \\
& CX \leq Z_0 \\
& X \geq 0
\end{align*}
\]

(P.3)

Clearly (P.3) is a constrained form of (P.2). Let \(X^* \) be one of the optimas of (P.3) alternate to \(X^0 \).

Changing the cost vector to \(C^+ = C + \varphi f \), (where \(\varphi > 0 \) is taken arbitrarily small) in (P.3), let us consider the linear programming problem:

\[
\begin{align*}
\text{Max. } & C^+X \\
\text{s.t. } & DX = d \\
& CX \leq Z_0 \\
& X \geq 0
\end{align*}
\]

(P.4)
For \(\varphi = 0 \), (P.4) becomes (P.3) and so \(X^0 \) and \(X^* \) are both optimal extreme point solutions of (P.4). But for \(\varphi \neq 0 \), the hyperplane \(Z = C^+X \) representing the objective function gets tilted and so one of these is bound to lose its optimality character. For \(\varphi \neq 0 \) and a specified \(f \) let when \(X^0 \) loses its optimality character, \(X^* \) be one of the alternatives which continue to be optimal for (P.4).

We have not yet given any definite value to \(\varphi \). Now choose \(\varphi > 0 \), such that we have for (P.4)

\[
\begin{align*}
\text{(i)} & \quad X^0 \text{ as a second best extreme point solution, and } \cr
\text{(ii)} & \quad \text{another second best extreme point solution } \hat{X} \text{ (say) which is feasible for (P.1).}
\end{align*}
\]

Such a choice of \(\varphi \) is made by method of 'S' given below.

Method 'S'

Let \(B \) be a basis for optimal extreme point solution \(X^* \) of (P.4). Write

\[
H(B) = \{ j \mid Z^+_j - C^+_j > 0 \}
\]

\[
\theta_j = \min \left\{ \frac{x_{Bj}}{y_{ij}} \mid y_{ij} > 0, j \in H(B) \right\}
\]

\[
\gamma_B = \min_{i \in \hat{B}} \{ \theta_i (Z^+_j - C^+_j) \mid \theta_i > 0 \}
\]

\[
\delta = \min \{ \gamma_B \mid B \text{ is a basis for } X^* \}
\]

where \(Z^+_j - C^+_j \) are values of \((Z_i - C_i) \) evaluated for cost vector \(C^+ \).

\[
\begin{align*}
 x_{Bj} : & \text{ } \text{ith component of } X_B \text{ where } X^* = [X_B, 0] \\
y_{ij} : & \text{ } \text{i}th \text{ component of } y_i \text{ where } y_i = B^{-1}d_i \\
d_j : & \text{ } \text{j}th \text{ column of the coefficient matrix in (P.4).}
\end{align*}
\]

If \(\delta = \theta_k (Z^+_k - C^+_k) \), then by inserting \(d_k \) into the basis we get a second best extreme point solution. If the above minima are not determined uniquely we are bound to get more than one second best extreme point solution of (P.4) (Hadley 1962). As in the present case we are ourselves interested in getting more than one second best extreme point solutions, we choose \(\varphi \) as follows:

When \(\delta \) is determined uniquely — This is the case representing existence of a unique optimal basis of (P.4) yielding minimum \(\gamma_B \). From simplex table corresponding to basis \(B \) for which such a \(\delta \) is achieved we put for two different suffixes \(k \) and \(r \) in accordance with our requirement (a)
\[\gamma_B = \theta_k(Z_k^+ - C_k^+) = \theta_r(Z_r^+ - C_r^+) \] \(1\)

This equation determines the required value of \(\varphi \) in this case.

When \(\delta \) is not determined uniquely — In this case there will be alternate optimal bases yielding same minimum \(\gamma_B \). Let \(B_1 \) and \(B_2 \) be two bases for which

\[\gamma_{B_1} = \gamma_{B_2} = \delta. \]

Let

\[\gamma_{B_1} = \theta_k^1(Z_k^+ - C_k^+) \]

and

\[\gamma_{B_2} = \theta_r^2(Z_r^+ - C_r^+) \]

Then \(\varphi \) is determined by equating

\[\theta_k^1(Z_k^+ - C_k^+) = \theta_r^2(Z_r^+ - C_r^+) \] \(2\)

(suffixes 1 and 2 correspond to bases \(B_1 \) and \(B_2 \) respectively).

\(X^0 \) necessarily is one of the second best extreme point solutions. Let us suppose that \(X^0 \) is obtained by inserting \(d_k \) into the basis for \(X^* \). Also by inserting \(d_r \) we must get some other feasible point of (P.1).

We shall first proceed with the case when it is so (i.e. requirement \(\alpha \) is satisfied completely) and then take up the case when the second best extreme point solution of (P.4) (other than \(X^0 \)) comes out to be a point infeasible for (P.1).

Case I — Let by inserting \(d_r \) in an optimal basis (i.e. a basis for \(X^* \)) determined by \(\delta \) we get \(\bar{X} \) as a second best extreme point solution of (P.4) and let \(\bar{X} \) be feasible for (P.1).

As \(C^+ = C + \varphi f \)

so \(C_B^+ = C_B + \varphi f_B \)

where \(f_B \) are components of \(f \) corresponding to basic variables then,

\[Z_j^+ - C_j^+ = C_B^+ y_j - C_j^+ = (C_B + \varphi f_B) y_j - (C_j + \varphi f_j) \]

\[= (C_B y_j - C_j) + \varphi(f_B y_j - f_j) \]

\[= (Z_j - C_j) + \varphi(f_B y_j - f_j) \] \(3\)

So from (1) we have

\[\theta_k (Z_k - C_k) + \varphi(f_B y_k - f_k) = \theta_r (Z_r - C_r) + \varphi(f_B y_r - f_r) \]
So,
\[\varphi = -\frac{\theta_k(Z_k - C_k) - \theta_r(Z_r - C_r)}{\theta_k(f_{B_k}y_k - f_k) - \theta_r(f_{B_r}y_r - f_r)} = \varphi_0 \] \hspace{1cm} \text{(4)}

This is the critical value of \(\varphi \) in this case.

Again for the case when \(\delta \) is not determined uniquely we have from (2) and (3)
\[\theta_k^1[(Z_k^1 - C_k^1) + \varphi(f_{B_k^1}y_k^1 - f_k)] = \theta_r^2[(Z_r^2 - C_r^2) + \varphi(f_{B_r^2}y_r^2 - f_r)] \]
then
\[\varphi = -\frac{\theta_k^1(Z_k^1 - C_k^1) - \theta_r^2(Z_r^2 - C_r^2)}{\theta_k^1(f_{B_k}y_k^1 - f_k) - \theta_r^2(f_{B_r}y_r^2 - f_r)} = \varphi_0 > 0 \] \hspace{1cm} \text{(5)}

which is the critical value of \(\varphi \) when alternate optimal bases exist yielding same \(\delta \).

Case II — Let by inserting \(d_r \) into the basis we get \(\bar{X} \) which is not feasible for (P.1).

In this case we make \(\bar{X} \) play the role of \(X^* \).

Introduce a cut \((C + \varphi_0 f) X \leq Z_1 \) [where \((C + \varphi_0 f) X^0 = Z_1, \varphi_0 \) being the value of \(\varphi \) given by (4) or (5) as the case may be] and consider the linear programming problem
\[
\begin{align*}
\text{Max} \hspace{0.5cm} & (C^+ + \varphi_1 f) X \\
\text{s.t.} \hspace{0.5cm} & DX = d \\
& C^+ X \leq Z_1 \\
& X \geq 0
\end{align*}
\]
\hspace{1cm} \text{(P.5)}

where \(C^+ = C + \varphi_0 f \) and \(\varphi_1 \) is a nonnegative scalar.

For \(\varphi_1 = 0 \), \(X^0 \) and \(\bar{X} \) are optimal extreme point solutions of (P.5). But if \(\varphi_1 \neq 0 \), then \(X^0 \) ceases to be optimum and we are left with \(\bar{X} \) as one of the optimal extreme point solutions of (P.5). Now we so choose \(\varphi_1 \) that we have for (P.5)

(i) \(X^0 \) as a second best extreme point solution, and

(ii) another second best extreme point solution \(X^1 \) (say) feasible for (P.1).

Choice of such a \(\varphi_1 \) is made again by method 'S'.

If by inserting \(d_k^* \) (kth columns of the coefficient matrix in P.5) we get \(X^0 \) and by inserting \(d_r^* \) we have \(X^1 \), then put
\[\theta_k(Z_k^{++} - C_k^{++}) = \theta_r(Z_r^{++} - C_r^{++}) \] \hspace{1cm} \text{(6)}
\((Z_i^{++} - C_i^{++})\) is the value of \((Z_i - C_i)\) evaluated for \(C\) being taken as
\[C^{++} = C^+ + \varphi_1 f = C + (\varphi_0 + \varphi_1) f.\]

Equation (6) gives

\[\varphi_1 = - \frac{\theta_k(Z_k^+ - C_k^+) - \theta_r(Z_r^+ - C_r^+)}{\theta_k(f_B y_k^+ - f_k) - \theta_r(f_B y_r^+ - f_r)} = \varphi_1'.\]

where \(f_B\) and \(\theta_k, \theta_r\) are evaluated corresponding to basis \(B\) for \(X\).

When \(\delta\) for (P.5) is not determined uniquely we proceed as in Case I and obtain

\[\varphi_1 = - \frac{\theta_k^1(Z_k^1+ - C_k^+^1) - \theta_r^2(Z_r^{2+} - C_r^{2+})}{\theta_k^1(f_B y_k^1 - f_k) - \theta_r^2(f_B y_r^2 - f_r)} = \varphi_1'.\]

Here \(B_1\) and \(B_2\) are two different bases yielding same \(\delta\). Also suffixes 1 and 2 indicate the various terms being evaluated for \(B_1\) and \(B_2\) respectively.

\(\varphi^1 = \varphi_0 + \varphi_1'\) gives the critical values of \(\varphi\) in this case.

If \(X^1\) again comes out to be infeasible for (P.1) we repeat the process and continue till an extreme point of \(DX = d, X \geq 0\) feasible for (P.1) as required is obtained.

Whenever \(\varphi\) is taken less than or equal to its critical value \(\varphi_c\) \([\varphi_0\ in\ case\ (i), \varphi^1\ in\ case\ (ii)]\), \(X^0\) the given optimal solution of (P.1), continuous to be optimal for the perturbed problem. But the moment \(\varphi > \varphi_c\), \(X^0\) ceases to be optimal for the perturbed problem. With optimal solution as \(X^*\) \([\text{case (i)}]\) or \(\bar{X}\) \([\text{case (ii)}]\); that second best solution which is other than \(X^0\) and is feasible for \(AX = b\), gives the new optimal solution of the perturbed problem for \(\varphi\) slightly exceeding \(\varphi_c\).

Remarks

1. Whenever \(f\) is normal to the optimal hyperplane at an extreme point of \(DX = d, X \geq 0\) feasible for (P.1), then this extreme point solution remains optimal for every \(\varphi > 0\).

2. Whenever optimal solution for (P.1) is unique there exists an interval for \(\varphi\) viz. \(0 \leq \varphi \leq \varphi_c\) for which \(X^0\) remains optimal. When optimal solution of (P.1) is not unique, we will have \(\varphi_c = 0\).

3. Sensitivity of the cost vector is tested for only rational changes in \(C\). When the changes are drastic it is always better to solve the problem afresh.
Algorithm

The complete procedure can be incorporated in the following working steps:

Step 1: Solve (P.3). \(X^0 \) is one of its optimal extreme point solution and \(CX^0 = Z^0 \). Find alternative optima and let \(X^* \) be one of the alternatives found.

Step 2: Solve (P.4). At least one of the extreme point solutions of (P.3) alternate to \(X^0 \) will be its optimal solutions.

Step 3: In the optimal simplex table obtained in step 2, apply method ‘S’ and determine \(\varphi_0 \) as given by (4) or (5) as the case may be.

Let by entering columns corresponding to \(k \)th and \(r \)th suffixes we obtain solutions \(X^0 \) and \(\bar{X} \) respectively. Clearly \(\bar{X} \) is an extreme point of \(DX = d, \ X \geq 0 \) which may or may not be feasible for \(AX = b \). If \(\bar{X} \) is feasible for (P.1), we have obtained the critical value of \(\varphi \). If \(\bar{X} \) is not feasible for (P.1) go to step 4.

Step 4: Repeat steps 1–3 by considering (P.3)' and (P.5) in place of (P.3) and (P.4) in steps 1 and 2 respectively i.e. consider

Max \(C^+X \)

s.t. \(DX = d \)

\(C^+X \leq Z_1 \)

\(X \geq 0 \)

and

Max \((C^+ + \varphi_0 f^+)X \)

s.t. \(DX = d \)

\(C^+X \leq Z_1 \)

\(X \geq 0 \)

where \(C^+ = C + \varphi_0 f \) and \((C + \varphi_0 f)X^0 = Z_1 \).

Continue repeating step 4 till such an \(\bar{X} \) comes out to be feasible for (P.1).

For finding new optimal solution of the perturbed problem:

Second best extreme point solutions (other than \(X^0 \)) of (P.4) or (P.5) as the case may be determine the new optimal solutions of (P.1) with changed cost vector.

Example

Consider the extreme point mathematical programming problem

Max. \(x_1 + 2x_2 \)

subject to \(2x_1 + 18x_2 \leq 221 \)

\(6x_1 + 2x_2 \leq 91 \)
and \((x_1, x_2)\) is an extreme point of
\[
\begin{align*}
-4x_1 + x_2 &\leq 4 \\
-x_1 + x_2 &\leq 7 \\
-x_1 + 7x_2 &\leq 73 \\
3x_1 + 2x_2 &\leq 57 \\
2x_1 - x_2 &\leq 17 \\
5x_1 - 7x_2 &\leq 20 \\
x_1, x_2 &\geq 0
\end{align*}
\]
\((P.1)\)

Let us discuss sensitivity of the given optimal solution \(X^0 = [x_1 = 4, x_2 = 11]\) of
\((P.1)\), given that \(f = [1 - 3]\).

After adding slack variables \((P.3)\) takes the form:

Max. \(x_1 + 2x_2\)
subject to
\[
\begin{align*}
-4x_1 + x_2 + x_3 &= 4 \\
-x_1 + x_2 + x_4 &= 7 \\
-x_1 + 7x_2 + x_5 &= 73 \\
3x_1 + 2x_2 + x_6 &= 57 \\
2x_1 - x_2 + x_7 &= 17 \\
5x_1 - 7x_2 + x_8 &= 20 \\
x_1 + 2x_2 + x_9 &= 26 \\
x_1, x_2, ..., x_9 &\geq 0
\end{align*}
\]
\((P.3)\)

\(X^* = [x_1 = 12, x_2 = 7]\), an optimal solution of \((P.3)\) alternate to \(X^0\) is given by
Table I.

<table>
<thead>
<tr>
<th>(f_B)</th>
<th>(C_B)</th>
<th>(B)</th>
<th>(X_B)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(d_5)</th>
<th>(d_6)</th>
<th>(d_7)</th>
<th>(d_8)</th>
<th>(d_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>2</td>
<td>(d_2)</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1/5</td>
<td>0</td>
<td>2/5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(d_1)</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2/5</td>
<td>0</td>
<td>1/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(d_3)</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9/5</td>
<td>0</td>
<td>2/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(d_4)</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-4/5</td>
<td>0</td>
<td>-7/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(d_5)</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>9/5</td>
<td>0</td>
<td>-13/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(d_6)</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-17/5</td>
<td>1</td>
<td>0</td>
<td>9/5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(d_7)</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3/5</td>
<td>0</td>
<td>-1/5</td>
</tr>
</tbody>
</table>

\(Z_4 - C_i = 0\)
\(f_B y_4 - f_4 = 0\)
\(\theta_4 = \frac{20}{5}\)
From (4), critical value of \(\varphi \) is given by

\[
\varphi_c = \frac{-\theta_1(Z_7 - C_7) - \theta_6(Z_\theta - C_\theta)}{\theta_1(f_By_7 - f_7) - \theta_6(f_By_\theta - f_\theta)}
\]

\[
= \frac{-20(0) - 5(1)}{20(1) - 5(-1)} = \frac{1}{5}
\]

If we enter \(d_7 \) into the basis for \(X^* \) and depart \(d_6 \), we get back the given original optimal solution \(X^0 \). If we enter \(d_\theta \) into the basis for \(X^* \) and depart \(d_6 \), we get \(\bar{X} = [x_1 = 11, x_2 = 5] \), which is feasible for (P.1).

Hence we conclude that for the perturbed problem

\[
\text{Max. } (1 + \varphi) x_1 + (2 - 3\varphi) x_2
\]

subject to constraints given in (P.1),

\(X^0 \) remains optimal for \(\varphi \leq \frac{1}{5} \).

But the moment \(\varphi \) is taken slightly greater than \(\frac{1}{5} (= \varphi_c) \), \(\bar{X} \) becomes the new optimal solution.

Acknowledgement

The authors are grateful to Professor R. N. Kaul, Dean, Faculty of Mathematics, University of Delhi, for his guidance and constant encouragement. They are also grateful to the referee for his valuable suggestions.

References

