HYPERSURFACES OF ALMOST HYPERBOLIC HERMITE MANIFOLDS

R. B. PAL AND R. S. MISHRA

Department of Mathematics, Banaras Hindu University, Varanasi 221005

(Received 30 August 1979)

In this paper it is shown that a hypersurface of hyperbolic Hermite manifold admits an induced hyperbolic contact structure. A condition for hypersurface of an almost hyperbolic Hermite manifold with vanishing curvature tensor to be conformally flat is also obtained.

1. INTRODUCTION

Let V_m be an m-dimensional differentiable manifold in which there exist a vector-valued linear function F and a Riemannian metric G, satisfying

$$F^2 \lambda = \lambda$$ \hspace{2cm} (1.1)

$$G(F\lambda, F\mu) = - G(\lambda, \mu)$$ \hspace{2cm} (1.2)

for arbitrary vector fields λ, μ in V_m. Then V_m is called an almost hyperbolic Hermite manifold (Prvanović 1971, Dube 1973).

An almost hyperbolic Hermite manifold V_m for which

$$(E_\lambda F) \mu = 0$$ \hspace{2cm} (1.3)

where E is the Riemannian connexion, is satisfied, is called hyperbolic Kählerian manifold (Prvanović 1971).

Let V_n be a differentiable manifold of dimension n. Let there exist a tensor field f of the type $(1, 1)$, a 1-form A, a vector field T and the Riemannian metric tensor g satisfying

$$f^2X = X + A(X) T$$ \hspace{2cm} (1.4)

$$fT = 0$$ \hspace{2cm} (1.5)

$$A(fX) = 0$$ \hspace{2cm} (1.6)

$$A(T) = -1$$ \hspace{2cm} (1.7)

$$g(X, T) = A(X)$$ \hspace{2cm} (1.8)

$$g(fX, fY) = -g(X, Y) - A(X) A(Y).$$ \hspace{2cm} (1.9)

Then V_n is called hyperbolic contact metric manifold (Upadhyay and Dube 1973).
The Nijenhuis tensor $N(X, Y)$ of the hyperbolic contact metric manifold is given by the relation

$$N(X, Y) = (D_{Xf}) Y - (D_{Yf}) X + f(D_Y f) X - f(D_X f) Y. \quad \ldots(1.10)$$

D is the Riemannian connexion of V_n.

Definition 1.1 — When the tensor field

$$P(X, Y) = N(X, Y) + (dA)(X, Y) T \quad \ldots(1.11)$$

vanishes, where N is the Nijenhuis tensor formed with f then hyperbolic contact metric manifold V_n is said to be normal.

2. **HYPERSURFACES**

Let us consider a hypersurface V_n, $(n = m - 1)$ of an almost hyperbolic Hermite manifold with the immersion map $b : V_n \rightarrow V_m$ such that a point

$$p \in V_n \Rightarrow bp \in V_m.$$

Let B be the corresponding Jacobian map, such that a vector field X in V_n at $p \Rightarrow BX$ in V_m at bp. Let g be the induced Riemannian metric of V_n. Let N be a unit normal vector to V_n. Then we have

\[
\begin{align*}
(a) \quad & G(BX, BY) \circ b = g(X, Y) \\
(b) \quad & G(BX, N) \circ b = 0 \\
(c) \quad & G(N, N) = 1.
\end{align*}
\]

\ldots(2.1)

Let us express the transformation of BX and N by F as the sum of tangential and normal parts in the form

\[
\begin{align*}
(a) \quad & FBX = BfX + A(X) N \\
(b) \quad & FN = -BT.
\end{align*}
\]

\ldots(2.2)

Theorem 2.1 — A hypersurface V_n of an almost hyperbolic Hermite manifold V_m is a hyperbolic contact metric manifold.

Proof: Premultiplying (2.2a) and (2.2b) by F and using (1.1) and (2.2) and collecting tangential and normal parts, we have

\[
\begin{align*}
(a) \quad & f^2 X = X + A(X) T, \quad (b) \quad A(fX) = 0. \quad \ldots(2.3) \\
(a) \quad & fT = 0, \quad (b) \quad A(T) = -1. \quad \ldots(2.4)
\end{align*}
\]

Also from (1.2), we have

$$G(FBX, FBY) = -G(BX, BY). \quad \ldots(2.5)$$
Making use of (2.1) and (2.2) in (2.5), we have

\[g(fX, fY) = -g(X, Y) - A(X) A(Y). \] ...(2.6)

Equations (2.3), (2.4) and (2.6) prove the statement.

Equations of Gauss and Weingarten are given by

\[
\begin{align*}
(a) & \quad E_{B}X_B Y = BD_X Y + 'H(X, Y) N \\
(b) & \quad E_{B}X_N = -BH_X
\end{align*}
\] ...(2.7)

where \(E \) and \(D \) are Riemannian connexions in \(V_m \) and \(V_n \) respectively. \('H(X, Y) \) is a symmetric second fundamental tensor with respect to normal \(N \) and \(H(X) \) is a tensor field of the type \((1, 1)\) defined by

\['H(X, Y) \overset{\text{def}}{=} g(HX, Y). \] ...(2.8)

Let us suppose that \(V_m \) be a hyperbolic Kählerian manifold, then (1.3) implies.

\[(E_{B}X_B) BY = 0 \Rightarrow E_{B}X_FB Y = FE_{B}X_B Y. \] ...(2.9)

Substituting in (2.9) from (2.2) and (2.7) and collecting tangential and normal parts, we get

\[
\begin{align*}
(a) & \quad (D_X f) Y = -'H(X, Y) T + A(Y) HX \\
(b) & \quad (D_X A) (Y) = -'H(X, fY).
\end{align*}
\] ...(2.10)

Theorem 2.2 — If \(V_n \) is a hypersurface of a hyperbolic Kählerian manifold \(V_m \) and \(H \) commutes with \(f \), then hyperbolic contact metric manifold \(V_n \) is normal.

Proof: Rewrite (1.11)

\[P(X, Y) = N(X, Y) + (dA) (X, Y) T. \]

In consequence of (1.10), we have

\[P(X, Y) = (D_X f) Y - (D_Y f) X + f(D_X f) X - f(D_X f) Y \\
+ \{(D_X A) (Y) - (D_Y A) (X)\} T. \] ...(2.11)

In consequence of (2.10), we have

\[P(X, Y) = A(Y) \{H fX - fHX\} - A(X) \{H fY - fHY\} . \] ...(2.12)

If \(H \) commutes with \(f \), then we have \(P(X, Y) = 0 \).

Hence, we have proved the theorem.

Let \(R \) be the curvature tensor of the Riemannian connexion \(E \) and \(K \) be the curvature tensor of the induced Riemannian connexion \(D \), then we have
HYPERSURFACES OF ALMOST HYPERBOLIC HERMITE MANIFOLDS

\['R(BX, BY, BZ, BU) = 'K(X, Y, Z, U) + 'H(X, Z) 'H(Y, U) \]
\[- 'H(Y, Z) 'H(X, U) \] \hspace{1cm} (2.13a)

\['R(BX, BY, BZ, N) = (Dx'H) (Y, Z) - (Dy'H) (X, Z) \] \hspace{1cm} (2.13b)

where

\['R(BX, BY, BZ, BU) \overset{\text{def}}{=} G(R(BX, BY, BZ), BU) \] \hspace{1cm} (2.14a)

\['K(X, Y, Z, U) \overset{\text{def}}{=} g(K(X, Y, Z), U). \] \hspace{1cm} (2.14b)

Theorem 2.3 — A hypersurface \(V_n \) of an almost hyperbolic Hermite manifold \(V_m \) with vanishing curvature tensor be conformally flat if \('H(X, Y) = -g(fX, fY) \).

Proof : Since the curvature tensor of an almost hyperbolic Hermite manifold \(V_m \) vanishes, then from (2.13a), we have

\['K(X, Y, Z, U) = 'H(X, U) 'H(Y, Z) - 'H(X, Z) 'H(Y, U) \] \hspace{1cm} (2.15)

from the supposition and using (1.9), we have

\['K(X, Y, Z, U) = g(Y, Z) g(X, U) - g(X, Z) g(Y, U) \]
\[+ g(Y, Z) A(X) A(U) - g(X, Z) A(Y) A(U) \]
\[+ g(X, U) A(Y) A(Z) - g(Y, U) A(X) A(Z) \] \hspace{1cm} (2.16a)

or

\[K(X, Y, Z) = g(Y, Z) X - g(X, Z) Y + g(Y, Z) A(X) T \]
\[- g(X, Z) A(Y) T + A(Y) A(Z) X - A(X) A(Z) Y. \] \hspace{1cm} (2.16b)

Contracting the above equation with respect to \(X \), we set

\[\text{Ric} \ (Y, Z) = (n - 2) \ (g(Y, Z) + A(Y) A(Z)) \] \hspace{1cm} (2.17a)

or

\[R(Y) = (n - 2) \ (Y + A(Y) T). \] \hspace{1cm} (2.17b)

Contracting the above equation with respect to \(Y \), we get

\[R = (n - 2) \ (n - 1) \] \hspace{1cm} (2.18)

where \(R \) is a scalar curvature tensor of \(V_n \).

On making use of (2.17) and (2.18) in (2.16), we get

\[K(X, Y, Z) - \frac{1}{(n - 2)} \ \{ \text{Ric} \ (Y, Z) X - \text{Ric} \ (X, Z) Y + g(Y, Z) R(X) - \]

(equation continued on p. 632)
\[- g(X, Z) R(Y) - \frac{R}{(n - 1) (n - 2)} \{ g(Y, Z) X - g(X, Z) Y \} = 0 \]
\[\Rightarrow V(X, Y, Z) = 0 \]

where \(V(X, Y, Z) \) is a conformal curvature tensor. Hence, we have the statement.

Theorem 2.4 — In a hyperbolic contact metric hypersurface \(V_n \) of a hyperbolic Kählerian manifold \(V_m \), the induced structure tensor \(f \) is covariant constant if \(HX \) vanishes.

Proof: Rewrite (2.10a)

\[(D_x f) \ Y = - H(X, Y) T + A(Y) HX. \]

If we suppose \(HX \) vanishes, then we have

\[(D_x f) \ Y = 0 \]

Hence, we have the statement.

References

