MAPPINGS ON METRIC SPACES

J. MADHUSUDANA RAO

Department of Mathematics, Nagarjuna University,
Nagarjunanagar 522510 (Andhra Pradesh)

(Received 4 June 1979)

It is well known that a contraction on a complete metric space has a unique fixed point. Kannan (1968) exhibited another class of maps with this property and investigated about common fixed points of pairs of mappings. Fisher (1976) defined Kannan maps and obtained a relationship between contractions and Kannan maps. Our first result exhibits a wide class of mappings each member of which has a unique fixed point such that contractions and Kannan maps belong to it. We call the members of this class as generalized Kannan maps. Our second result exhibits a relationship between generalized Kannan maps satisfying a condition and contractions.

§1. A contraction mapping is a mapping T on a metric space (X, d) into itself which satisfies $d(Tx, Ty) \leq C d(x, y)$ for all x, y in X where $0 \leq C < 1$. It is well known that a contraction mapping on a complete metric space has a unique fixed point. Kannan (1968) investigated the conditions under which two mappings on a metric space have a common fixed point and proved the following:

Theorem (Kannan 1968) — If T_1 and T_2 are mappings on a complete metric space (X, d) into itself and if there is a constant K such that $0 \leq K < \frac{1}{2}$ and

$$d(T_1x, T_2y) \leq K(d(x, T_1x) + d(y, T_2y)) \quad \text{...(A)}$$

for all x, y in X, then T_1 and T_2 have a unique common fixed point.

Fisher (1976) defined a mapping T on a metric space (X, d) to be a Kannan mapping if it satisfies (A) with $T_1 = T_2 = T$ and obtained a relation between Kannan mappings and contraction mappings. In fact he proved that if T is a contraction mapping on a metric space into itself then T^n is a Kannan mapping for large n and on the other hand if T is any Kannan mapping on (X, d) satisfying

$$d(x, Tx) + d(y, Ty) \leq h d(x, y)$$

for all x, y in X and a fixed $h > 0$, T^n is a contraction mapping for large n.

The purpose of this note is to extend these results to a much wider class of mappings.

§2. Let (X, d) be a metric space.
Definition 1 — A pair of mappings \((T_1, T_2)\) on \(X\) into itself is said to have the Kannan property or simply the property \(K\) if there exist constants \(K_i(1 \leq i \leq 5)\) so that

\[
0 \leq K_i \quad \text{for} \quad 1 \leq i \leq 5 \tag{1.1}
\]

\[
K_1 + K_2 + 2K_4 + K_5 < 1 \text{ for } i = 3 \text{ and } i = 4 \tag{1.2}
\]

and

\[
d(T_1x, T_2y) \leq K_1d(x, T_1x) + K_2d(y, T_2y) + K_4d(x, T_2y) + K_5d(x, y) \tag{1.3}
\]

for all \(x, y\) in \(X\).

Remark : The inequalities (1.2) imply that \(K_2 + K_4 + K_5 < 1\).

Definition 2 — A mapping \(T\) on \(X\) into itself is said to be a generalized Kannan mapping if the pair \((T, T)\) has the property \(K\). In that case we sometimes write that \(T\) has the property \(K\).

Remark : Contraction mappings and Kannan mappings are generalized Kannan mappings.

Theorem 1 — If \(T\) is a generalized Kannan mapping of a complete metric space into itself, then \(T\) has a unique fixed point.

Theorem 1 is an immediate consequence of the following proposition.

Proposition 1 — Let \((X, d)\) be a complete metric space and \(T_1, T_2\) be mappings of \(X\) into itself. If \((T_1, T_2)\) has the property \(K\) then \((T_1, T_2)\) has a unique common fixed point.

Proof : Let \(x \in X\) and write \(x_1 = T_1x, x_2 = T_2x_1, x_3 = T_1x_2, \) and so on. Then

\[
d(x_1, x_2) = d(T_1x, T_2x_1) \leq K_1d(x, T_1x) + K_2d(x_1, T_2x_1) + K_4d(x, T_2x_1) + K_5d(x, x_1) \]

where \(K_i(1 \leq i \leq 5)\) are constants as in Definition 1.

Hence \((1 - K_2)\) \(d(x_1, x_2) \leq (K_1 + K_5)\) \(d(x, x_1) + K_5d(x, x_2)\)

\[
\leq (K_1 + K_5)\) d(x, x_1) + K_5d(x, x_1) + d(x_1, x_2)).
\]

\[
\Rightarrow (1 - K_2 - K_5)\) d(x_1, x_2) \leq (K_1 + K_3 + K_5)\) d(x, x_1).
\]

Hence \(d(x_1, x_2) \leq \frac{K_1 + K_3 + K_5}{1 - K_2 - K_5} d(x, x_1)\).
An inductive argument yields the inequality
\[d(x_n, x_{n+1}) \leq r^n d(x, x_1) \]
where \(r = \frac{K_1 + K_3 + K_5}{1 - K_2 - K_3} \).

Now \(d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + \ldots + d(x_{n+p-1}, x_{n+p}) \)
\[\leq (r^n + r^{n+1} + \ldots + r^{n+p-1}) d(x, x_1) \]
\[\leq \frac{r^n}{1 - r} d(x, x_1). \quad \text{...}(B) \]

Since \(0 \leq r < 1 \), it is now clear that \(\{x_n\} \) is a Cauchy sequence and since \(X \) is complete, there is an \(x_0 \) in \(X \) so that \(d(x_n, x_0) \to 0 \) as \(n \to \infty \).

We show that \(x_0 \) is a common fixed point of \(T_1 \) and \(T_2 \). Let \(n \) be any even integer.
\[d(x_0, T_1 x_0) \leq d(x_0, x_n) + d(x_n, T_1 x_0) \leq d(x_0, x_n) + K_1 d(x_0, T_1 x_0) \]
\[+ K_2 d(x_{n-1}, T_2 x_{n-1}) + K_3 d(x_0, T_2 x_{n-1}) \]
\[+ K_4 d(T_1 x_0, x_{n-1}) + K_5 d(x_{n-1}, x_0). \]
Hence \((1 - K_1) d(x_0, T_1 x_0) - K_4 d(T_1 x_0, x_{n-1}) \leq d(x_0, x_n) + K_2 d(x_{n-1}, x_n) \]
\[+ K_3 d(x_0, x_n) + K_5 d(x_{n-1}, x_0). \]

Let \(n = 2p \). Taking the limits as \(p \to \infty \), we get
\[(1 - K_1) d(x_0, T_1 x_0) - K_4 d(T_1 x_0, x_0) \leq 0. \]

Since \(K_1 + K_4 < 1 \), we now get \(d(x_0, T_1 x_0) = 0 \). Hence \(x_0 = T_1 x_0 \). Now let \(n \) be any odd integer.
\[d(x_0, T_2 x_0) \leq d(x_0, x_n) + d(x_n, T_2 x_0) = d(x_0, x_n) + d(T_1 x_{n-1}, T_2 x_0) \]
\[\leq d(x_0, x_n) + K_1 d(x_{n-1}, T_1 x_{n-1}) + K_2 d(x_0, T_2 x_0) \]
\[+ K_3 d(x_{n-1}, T_2 x_0) \]
\[+ K_4 d(x_0, T_1 x_{n-1}) + K_5 d(x_{n-1}, x_0). \]
Hence \((1 - K_2) d(x_0, T_2 x_0) - K_5 d(x_{n-1}, T_2 x_0) \)
\[\leq d(x_0, x_n) + K_1 d(x_{n-1}, x_n) + K_4 d(x_0, x_n) + K_5 d(x_{n-1}, x_0). \]
Let \(n = 2p - 1 \). Taking the limits as \(p \to \infty \) we get
\[(1 - K_2 - K_5) d(x_0, T_2 x_0) \leq 0, \]
and since \(K_2 + K_5 < 1 \) we get \(x_0 = T_2 x_0 \). Thus \(x_0 \) is a common fixed point of \(T_1 \) and \(T_2 \).
We now prove the uniqueness. Suppose \(y_0 \) is also a common fixed point of \(T_1 \) and \(T_2 \). Then \(d(x_0, y_0) = d(T_1x_0, T_2y_0) \). Hence
\[
d(x_0, y_0) \leq K_1d(x_0, T_1x_0) + K_2d(y_0, T_2y_0) + K_3d(x_0, T_2y_0) + K_4d(y_0, T_1x_0) + K_5d(x_0, y_0).
\]
Hence \(d(x_0, y_0) \leq (K_3 + K_4 + K_5) d(x_0, y_0) \). Since \(K_3 + K_4 + K_5 < 1 \), it now follows that \(d(x_0, y_0) = 0 \); hence \(x_0 = y_0 \).

Theorem 2 — Suppose \(T \) is a mapping of a metric space \((X, d)\) into itself having the property \(K \). If there is a constant \(h > 0 \) such that
\[
d(x, Tx) + d(y, Ty) \leq hd(x, y)
\]
for all \(x, y \) in \(X \), then there exists a positive integer \(n \) such that \(T^n \) is a contraction mapping.

Proof: Since \(T \) has the property \(K \), there exist constants \(K_i (1 \leq i \leq 5) \) that satisfy (1.1) through (1.3). Now assume first that \(X \) is complete. Putting \(T_1 = T_2 = T \) in the inequality (B) of Proposition 1 we get
\[
d(x_n, x_{n+p}) \leq \frac{r^n}{1 - r} d(x, x_1) \text{ where } x_k = T^kx \text{ and } r = \frac{K_1 + K_3 + K_5}{1 - K_2 - K_4}.
\]
Letting \(p \) tend to infinity in the above inequality, we get
\[
d(x_n, x_0) = d(T^n x, x_0) \leq \frac{r^n}{1 - r} d(x, Tx) \text{ where } x_0 = \lim_n x_n.
\]
Similarly \(d(T^n y, x_0) \leq \frac{r^n}{1 - r} d(y, Ty) \) and so
\[
d(T^n x, T^n y) \leq \frac{r^n}{1 - r} [d(x, Tx) + d(y, Ty)]
\]
\[
\leq \frac{r^n}{1 - r} hd(x, y).
\]
But \(r^n \to 0 \) as \(n \to \infty \) and hence if \(0 < K < 1 \), then \(\frac{r^n}{1 - r} h < K \) for large \(n \) and if we fix any such \(n \) we get \(d(T^n x, T^n y) \leq Kd(x, y) \) for all \(x, y \), yielding that \(T^n \) is a contradiction.

Suppose now \(X \) is not complete.
\[
d(Tx, Ty) \leq K_1d(x, Tx) + K_2d(y, Ty) + K_3d(x, Ty) + K_4d(y, Tx) + K_5d(x, y)
\]
\[\leq d(x, Tx) + d(y, Ty) + K_2 d(x, Tx) + K_3 d(Tx, Ty) \]
\[+ K_4 d(y, Ty) + K_4 d(Tx, Ty) + K_5 d(x, y) \]

Hence
\[(1 - K_3 - K_4) d(Tx, Ty) \leq 2d(x, Tx) + 2d(y, Ty) + K_5 d(x, y). \]
\[\leq (2h + K_5) d(x, y). \]

Therefore
\[d(Tx, Ty) \leq \frac{2h + K_5}{1 - K_3 - K_4} d(x, y). \]

Thus \(T \) is uniformly continuous. Let \(\bar{X} \) be the completion of \(X \) and let \(\bar{T} \) be the completion of \(T \). It is clear that \(\bar{T} \) has the property \(K \). By what we have just proved, \(\bar{T}^n \) is a contraction on \(\bar{X} \) for large \(n \). It follows that \(T^n \) is a contraction for large \(n \) on \(X \) completing the proof of the theorem.

ACKNOWLEDGEMENT

The author is indebted to Dr I. Ramabhadrasarma for suggesting the problem and help in the preparation of this paper.

REFERENCES