ON A PROBLEM OF KATO ON THE L^2-CONTINUITY OF SOME PSEUDODIFFERENTIAL OPERATORS OF MULTIPLE SYMBOL

W. Y. LEE

Department of Mathematics, Rutgers University, Camden, New Jersey 08102, U.S.A.

(Received 6 June 1979)

Recently Kato proved the L^2-continuity of some pseudodifferential operator A associated with the symbol $a(x, \xi) \in S^0_{p, \rho}$, $0 \leq \rho \leq 1$, using Banach algebra techniques. He then raised the question of extending it to the symbol $a(x_1, x_2, \xi)$ of $3n$-variables. In this paper we answer the Kato's problem, using operational calculus introduced by Cordes and Kato's lemmas.

1. INTRODUCTION

Let $A : \mathcal{S} \rightarrow \mathcal{S}'$ be the pseudodifferential operator associated with the symbol $a(x_1, x_2, \xi) \in S^m_{p, \rho}$, $m \leq 0$, $0 \leq \rho \leq \delta < 1$, defined by

$$(Au, v) = (a, \omega) \quad \ldots(1.1)$$

where

$$u, v \in \mathcal{S}, \omega = (2\pi)^{-n}e^{-i(x_1 - x_2)\xi}u(x_2) \nu(x_1)$$

or formally

$$Au(x_1) = (2\pi)^{-n} \int e^{i(x_1 - x_2)\xi} a(x_1, x_2, \xi) u(x_2) \, dx_2 \, d\xi. \quad \ldots(1.2)$$

A number of authors, notably Hörmander (1967, 1971a, b), Calderón and Vaillancourt (1972), Cordes (1975), and Kumano-Go (1975), have investigated the L^2-continuity of pseudodifferential operator A defined by (1.1) or (1.2). Hörmander (1971a) showed that (1.2) is L^2-continuous if the symbol $a(x_1, x_2, \xi) \in S^m_{p, \rho}$ has a compact support in (x_1, x_2)-variables, satisfies the inequalities:

$$| \partial_{x_1}^\alpha \partial_{x_2}^\beta \partial_\xi^\gamma a(x_1, x_2, \xi) | \leq C_{\alpha \beta \gamma} (1 + | \xi |)^{m+\delta_1 | \alpha | + \delta_2 | \beta | - p | \gamma |} \quad \ldots(1.3)$$

for all multi-indices α, β and γ, and $m < n \{p - \frac{1}{2} (\delta_1 + \delta_2)\}$ for $0 \leq \rho \leq \delta < 1, j = 1, 2$. He also disproved the L^2-continuity of (1.2) if $m > n \{p - \frac{1}{2} (\delta_1 + \delta_2)\}$. Later on Calderon and Vaillancourt (1972) removed the assumption that the symbol $a(x_1, x_2, \xi)$ be compactly supported in (x_1, x_2)-variables, and relaxed the order of differentiabilities to a finite number, namely $| \alpha |, | \beta | \leq 2m_j, | \gamma | \leq 2 [n/2] + 2, m_j$ is the smallest
integer $\geq \frac{5n}{4(1 - \delta_2^2)}$, $j = 1, 2$. They then settled down the critical case when $m = n[p - \frac{1}{2}(\delta_1 + \delta_2)]$. For the symbol $a(x, \xi)$ of $2n$-variables, Cordes (1975) verified (1.1) is L^2-continuous if (1.3) is bounded for $|\alpha|, |\beta| \leq [2/n] + 1$. He heavily uses the fact that the fundamental solution of

$$(1 - \Delta)^{-\lambda}, \lambda > 0, \Delta = \sum_{1}^{n} \frac{\partial^2}{\partial x_j^2},$$

the Laplacian, is given by

$$\psi_\lambda(x) = (2\pi)^{-n/2} 2^{1-\lambda}/\Gamma(\lambda) \cdot |x|^{\lambda-(n/2)} \cdot K_{\lambda-(n/2)}(|x|),$$

$\Gamma(.)$ and $K_{\lambda-(n/2)}(.)$ are the Gamma and modified Bessel functions respectively, and that the integral operator with a kernel appearing in (1.1) is of trace class. Kumano-Go (1975) dealt with the space $S^m_{\lambda, p, \sigma}$, an extension of $S^m_{p, \sigma}$. He then defined the pseudodifferential operator $P = p(X, D_x, \tilde{x})$ associated with the symbol

$$p(x^0, \tilde{x}^0, \tilde{x}^\nu) \in S^m_{\lambda, p, \sigma}$$

via oscillatory integral. Subsequently, Kato (1976) proved that (1.1) is L^2-continuous if the symbol $a(x, \xi) \in S^0_{p, \sigma}$, $0 \leq p < 1$ satisfies (1.3) for $|\alpha| \leq [n/2] + 2$, $|\beta| \leq [n/2] + 1$. In his proof, Kato used some convolution identity, and partition of unity. He then raised the question of extending his results to a symbol $a(x_1, x_2, \xi)$ of $3n$-variables.

In this paper we answer Kato’s question. We used a similar technique initiated by Cordes (1975) and especially Kato (1976).

2. Operational Calculus

Following Cordes (1975), we introduce some special symbol. Let $g(x) = \psi_{r/2}(x)$ be the fundamental solution of $(1 - \Delta)^{r/2}$ for $r > 0$, where

$$\Delta = \sum_{1}^{n} \frac{\partial^2}{\partial x_j^2}.$$

Then (Cordes 1975, p. 118)

$$g(x) = (2\pi)^{r/2} 2^{(2-r)/2}/\Gamma(r) \cdot |x|^{(r-n)/2} \cdot K_{(r-n)/2}(|x|) \quad \ldots(2.1)$$

where $\Gamma(.)$ and $K_{(r-n)/2}(.)$ are the Gamma and modified Bessel functions respectively. From the behaviours of $\Gamma(.)$ and $K_{(r-n)/2}(.)$ near the origin and at infinity, g has the following asymptotic properties (Jahnke et al. 1960, p. 201, Watson 1966, p. 202):
ON THE L^2-CONTINUITY OF SOME PSEUDODIFFERENTIAL OPERATORS

\[g(x) = O \left(\frac{1}{|x|^{(\nu-n)/\nu}} \right) \quad \text{as} \quad |x| \to 0 \quad \ldots (2.2) \]

\[g(x) = O \left(\frac{1}{|x|^{(\nu-n)/\nu} e^{-|x|/1}} \right) \quad \text{as} \quad |x| \to \infty. \quad \ldots (2.3) \]

In particular if $\nu = n$,

\[g(x) = O \left(\log |x| \right) \quad \text{as} \quad |x| \to 0, \quad \ldots (2.4) \]

Suppose now the symbol $a \in S^m_{\mathfrak{p},\mathfrak{q}}$ satisfy (1.3) with $|a| \leq [n/2] + 2$, $|p|, |q| \leq [n/2] + 1$, and write

\[b = (1 - \Delta x)^{r/2} (1 - \Delta x_2)^{s/2} (1 - \Delta x_3)^{t/2} a \quad \text{for} \quad r, s, t > (n/2). \]

Denote the fundamental solution of $(1 - \Delta x)^{r/2} (1 - \Delta x_2)^{s/2} (1 - \Delta x_3)^{t/2} b$ by

\[g(x_1, x_2, \xi) = \psi_{r/2} (x_1) \psi_{s/2} (x_2) \psi_{t/2} (\xi) \quad \ldots (2.5) \]

where $\psi_{r/2} (\cdot)$ is given by (2.1). Then we have

\[a = b * g. \quad \ldots (2.6) \]

Notice that (2.6) has a meaning even in classical sense from (2.2) – (2.5).

3. L^2-CONTINUITY

Theorem 3.1 — For the symbol $a \in S'(R^{3n})$, suppose

\[b = (1 - \Delta x)^{r/2} (1 - \Delta x_2)^{s/2} (1 - \Delta x_3)^{t/2} a \in L^\infty(R^{3n}) \]

for $r, s, t \leq [n/2] + 1$. Then the corresponding pseudodifferential operator A defined by (1.1) is L^2-continuous.

Proof: See Lee (1979).

Remark: The class of symbols a satisfying the assumptions of Theorem 3.1 contains $a(x_1, x_2, \xi)$ with compact support in ξ-variable (trivial case) or $a \in S^0_{\mathfrak{p},\mathfrak{q}}$.

Theorem 3.2 (main theorem) — Let the symbol $a \in S^m_{\mathfrak{p},\mathfrak{q}}$ for $m \leq 0$, $0 \leq \mathfrak{p} \leq \mathfrak{q} < 1$, satisfy (1.3) with $|a| \leq [n/2] + 2$, $|p|, |q| \leq [n/2] + 1$. Then the corresponding pseudodifferential A defined by (1.1) is L^2-continuous.

Proof: Let $e \in C^\infty_0 (R')$ be a nonnegative radial function such that $e(r) > 0$ for $r < 1/2$, $e(r) = 0$ for $r > 3/4$. Let $f(\xi) = e(\xi)$ for $\xi \in R^n$, and define

\[h_t(\xi) = f(\xi - j) \left[\sum_0^\infty f(\xi - j) \right]^{-1}. \]

Then $\{h_t\}$ is a partition of unity for which

\[|D_\xi \phi \ast h_t(\xi)| \leq C_t \quad \ldots (3.1) \]
is satisfied where \(C_\gamma \) is independent of \(j \). Set \(\phi_j(\xi) = h_j(\xi \mid |\xi|^{-\rho}) \). Then \(\{\phi_j\} \) is also a partition of unity, and (3.1) implies
\[
| \partial_\xi^\gamma \phi_j(\xi) | \leq C_\gamma (1 + |\xi|^{-\rho})^{\gamma+1}.
\] ...(3.2)

Define now \(a_j(x_1, x_2, \xi) = a(x_1, x_2, \xi) \phi_j(\xi) \). Then \(a(x_1, x_2, \xi) = \sum_0^\infty a_j(x_1, x_2, \xi) \), and each \(a_j(x_1, x_2, \xi) \) has a compact support in \(\xi \)-variable. A simple computation shows for each \(\xi \in \text{supp } a_j(x_1, x_2, \xi) \) there exists a constant \(C_1 \) independent of \(j \) such that
\[
j^{1/(1-\sigma)} - C_1 \leq |\xi| \leq j^{1/(1-\rho)} + C_1
\] ...(3.3)

(1.3) and (3.3) imply the following inequalities for
\[
|a| \leq \left[\frac{n}{2}\right] + 2, \quad |\beta|, \quad |\gamma| \leq \left[\frac{n}{2}\right] + 1:
\]
\[
| \partial_{x_1}^\alpha \partial_{x_2}^\beta \partial_\xi^\gamma a_j(x_1, x_2, \xi) | \leq C_2 j^{(\sigma_1/(1-\rho)) + (\sigma_2/(1-\rho)) + (\sigma_3/(1-\rho)) + \gamma} \chi_j(\xi)
\] ...(3.4)

where \(\chi_j(.) \) is the characteristic function of \(\text{supp } \phi_j(.) \). Set
\[
\mu_j = \frac{\alpha_j}{1 - \rho} (j = 1, 2), \quad \sigma = \frac{\rho}{1 - \rho},
\]
and write
\[
a_j'(x_1, x_2, \xi) = a_j(j^{-\kappa_1} x_1, j^{-\kappa_2} x_2, j^s \xi).
\]

Then (3.4) leads us to:
\[
| \partial_{x_1}^\alpha \partial_{x_2}^\beta \partial_\xi^\gamma a_j'(x_1, x_2, \xi) | \leq C'_2 \chi_j'(\xi)
\] ...(3.5)

where \(\chi_j'(\xi) \) is the characteristic function of \(\text{supp } \phi_j(j^s \xi) \), namely
\[
\chi_j'(\xi) = \begin{cases} 1 & j - C_2 \leq \xi < j + C_2 \\ 0 & \text{otherwise.} \end{cases}
\]

For \(r, s, t > \frac{1}{2} n \), write
\[
b_j'(x_1, x_2, \xi) = (1 - \Delta_{x_1})^{r/2} (1 - \Delta_{x_2})^{s/2} (1 - \Delta_\xi)^{t/2} a_j'(x_1, x_2, \xi). \] ...(3.6)

Then we have the following lemma due to Kato (1976, pp. 6-7):

Lemma 3.1 — There is a positive Radon measure \(\mu \) on \(\mathbb{R}^n \) and a constant \(C_3 \) independent of \(j \) such that

(i) \(b_j'(x_1, x_2, \xi) \leq C_3 \mu \ast X_j'(\xi) = C_3 M_j'(\xi) \)

(ii) \(\int (1 + |\xi|) \, d\mu(\xi) < \infty. \)
From (3.6) we have
\[a'_j = b'_j \ast g. \] \hspace{1cm} \text{(3.7)}

A scale transformation of (3.7) yields
\[a_j(x_1, x_2, \xi) = b_j \ast g_j(x_1, x_2, \xi) \] \hspace{1cm} \text{(3.8)}

where
\[
\begin{align*}
 b_j(x_1, x_2, \xi) &= b'_j (j^{\nu_1} x_1, j^{\nu_2} x_2, j^{-\sigma} \xi) \\
 g_j(x_1, x_2, \xi) &= g(j^{\nu_1} x_1, j^{\nu_2} x_2, j^{-\sigma} \xi).
\end{align*}
\] \hspace{1cm} \text{(3.9)}

Insertion of (3.8) and (3.9) into (1.1) shows
\[
| A\mu(x_1) | = (2\pi)^{-n} \int e^{(x_1 - x_2)^2} b'_j (j^{\nu_1} w, j^{\nu_2} y, j^{-\sigma} \xi) g(j^{\nu_1} (x_1 - w), j^{\nu_2} (x_2 - y), j^{-\sigma} (\xi - z)) u(x_2) \, dx_2 \, d\xi \, dw \, dy \, dz.
\] \hspace{1cm} \text{(3.10)}

An application of Lemma 3.1 and (3.10) gives us
\[
| \langle A\mu, u \rangle | \leq (2\pi)^{-n} \int e^{(x_1 - x_2)^2} M_j (j^{-\sigma} z) \psi_{r/2} (j^{\nu_1} (x_1 - w)) \times \psi_{r/2} (j^{\nu_2} (x_2 - y)) \psi_{r/2} (j^{-\sigma} (\xi - z)) \times u(x_2) \, \overline{u}(x_1) \, dx_2 \, d\xi \, dw \, dy \, dz \, dx_1.
\] \hspace{1cm} \text{(3.11)}

Since
\[
\int e^{(x_1 - x_2)^2} \psi_{r/2}(\xi) \, d\xi = (1 + |x_1 - x_2|^2)^{-t/2}
\] \hspace{1cm} \text{(3.12)}

substitution of (3.12) into (3.11) yields
\[
| \langle A\mu, u \rangle | \leq (2\pi)^{-n} \int e^{(x_1 - x_2)^2} M_r(z) \psi_{r/2}(j^{\nu_1} (x_1 - w)) \times \psi_{r/2} (j^{\nu_2} (x_2 - y)) (1 + j^{2\sigma} |x_1 - x_2|^2)^{-t/2} \times u(x_2) \, \overline{u}(x_1) \, dx_2 \, dw \, dy \, dz \, dx_1.
\] \hspace{1cm} \text{(3.13)}

Notice that \(M_j (j^{-\sigma} z) \leq M_r(z) \) in (3.13). Let \(\nu > n/2 \) and write
\[
u(x) = e^{-i\xi z} u(x).
\] \hspace{1cm} \text{(3.14)}

A straightforward computation and (3.14) reveal that (3.13) is rewritten as follows:
\[
| \langle A\mu, u \rangle | \leq (2\pi)^{-n} \int (1 + j^{2\sigma} |w|^2)^{-\nu} (1 + |y|^2)^{-\nu} M_r(z) \times \langle K^{(1)}_{\nu_1} u_\nu, u_\nu \rangle \, dw \, dy \, dz
\] \hspace{1cm} \text{(3.15)}

where
\[
K^{(1)}_{\nu_1} u_\nu(x_1) = \int k^{(1)}_{\nu_1} (x_1, x_2) u_\nu(x_2) \, dx_2
\] \hspace{1cm} \text{(3.16)}
\[k_{w,y}^{(i)}(x_1, x_2) = (1 + j^{2s_1} | w | ^2)^\nu (1 + | y | ^2)^\nu \psi_{s/2}(j^{s_1}(x_1 - w)) \]
\[\psi_{s/2}(j^{s_1}(x_1 - y))(1 + j^{2s_2} | x_1 - x_2 | ^2)^{-i/2} \]
\[\leq (1 + j^{2s_1} | w | ^2)^\nu (1 + | y | ^2)^\nu \psi_{s/2}(j^{s_1}(x_1 - w)) \psi_{s/2}(j^{s_2}(x_2 - y)). \]
\[\ldots(3.17) \]

Lemma 3.2 — The integral operator \(K_{w,y}^{(i)} \) defined by (3.16) with the kernel \(k_{w,y}^{(i)} \) given by (3.17) belongs to a trace class.

Proof: It suffices, according to Gelfand-Vilenkin (1964, pp. 39–40), Kato (1966, p. 522), or Yosida (1971, pp. 280–81) to show that the kernel \(k_{w,y}^{(i)} \) is expressed as a product of two Hilbert-Schmidt operators. For any positive real number \(p > \frac{n}{2} \), \(k_{w,y}^{(i)} \) is rewritten in view of (2.1) as follows:

\[k_{w,y}^{(i)}(x_1, x_2) = (1 + j^{2s_1} | w | ^2)^\nu (1 + | y | ^2)^\nu (1 - \Delta_{s_1})^{-p} (1 - \Delta_{s_2})^p \]
\[\times \{ \psi_{s/2}(j^{s_1}(x_1 - w)) (1 + j^{2s_2} | x_1 - x_2 | ^2)^{-i/2} \} \psi_{s/2}(j^{s_2}(x_2 - y)) \]
\[= \int (1 + j^{2s_1} | w | ^2)^\nu (1 + | y | ^2)^\nu \psi_{s/2}(x_1 - x_2 - \xi) (1 - \Delta_{s_2})^p \]
\[\times \{ \psi_{s/2}(j^{s_1}(\xi - w)) (1 + j^{2s_2} | \xi - x_2 | ^2)^{-i/2} \} \psi_{s/2}(j^{s_2}(x_2 - y)) \ d\xi \]
\[= \int k_{w,y}^{(i)}(x_1, \xi) l_{w,y}^{(i)}(\xi, x_2) d\xi \]
\[\ldots(3.18) \]

where

\[k_{w,y}^{(i)}(x_1, x_2) = (1 + j^{2s_1} | w | ^2)^\nu (1 + | y | ^2)^\nu \]
\[\times \psi_{s/2}(x_1 - x_2)(1 + | x_2 | ^2)^{-r/2} \]
\[l_{w,y}^{(i)}(x_1, x_2) = (1 + | x_1 | ^2)^{r/2} (1 - \Delta_{s_1})^p \psi_{s/2}(j^{s_1}(x_1 - w)) \]
\[\times (1 + j^{2s_2} | x_1 - x_2 | ^2)^{-i/2} \] \(\psi_{s/2}(j^{s_2}(x_2 - y)). \)

The fact that \(k_{w,y}^{(i)} \) and \(l_{w,y}^{(i)} \) belong to the kernels of Hilbert-Schmidt operator follow from (2.2)–(2.3), and by taking \(\tau > (3p/2) + t - r \). This completes the proof in view of (3.18).

Set

\[k^{(i)}(x_1, x_2) = \max_{k, l} \sup_{w, y} \left| k_{w,y}^{(i)}(x_1, x_2), l_{w,y}^{(i)}(x_1, x_2) \right| \]
\[\ldots(3.19) \]

and let \(K^{(i)} \) be the integral operator (3.16) with the kernel \(k^{(i)} \). Then the Fourier series expansion of \(K^{(i)} \) is given by

\[K^{(i)} = \sum \lambda_q \langle .., \Psi_{q} \rangle \Psi_{q} \]
\[\ldots(3.20) \]
where \(\{\lambda_q\} \) are the eigenvalues of \(K^{(t)} \) and \(\{\varphi_{tq}\} \) are the corresponding normalized eigenvectors. It follows from (3.15), (3.13) and (3.20) that

\[
\left| \langle K^{(t)}_{\psi_{tq}} u_z, u_z \rangle \right| \leq C(2\pi)^{-n} \sum_q \lambda_q \int |\hat{u}(z + \eta)|^2 \left| \hat{\varphi}_q(j^{\mu_1} \eta) \right|^2 d\eta
\]

(Plancherel)

\[
\leq \sum_q \lambda_q \int |\hat{u}(z + \eta)|^2 |\hat{\varphi}_q(j^{\mu_1} \eta)|^2 d\eta
\]

\[
= \sum_q \lambda_q \int |\hat{u}(z + j^{\mu_1} \eta)|^2 |\hat{\varphi}_q(\eta)|^2 d\eta. \quad \ldots(3.21)
\]

Observe that \(\hat{u}_z(\eta) = \hat{u}(z + \eta), \hat{\varphi}_t(z) = (j^{-n_{1/2}} \hat{\varphi}_q(j^{\mu_1} \eta) \) in (3.21). Insertion of (3.21) into (3.15) gives us

\[
| \langle A \psi, u \rangle | \leq C(2\pi)^{-n} j^{-\alpha} \sum_q \lambda_q \int M_\delta(z) \left(1 + j^{2\mu_1} |w|^2 \right)^{-\nu} \times (1 + |y|^2)^{-\gamma} |\hat{u}(z + j^{\mu_1} \eta)|^2 |\hat{\varphi}_q(\eta)|^2 dw \, dy \, dz \, d\eta
\]

\[
\leq C(2\pi)^{-n} \sum_q \lambda_q \int M_\delta(\xi - j^{\mu_1} \eta) |\hat{u}(\xi)|^2 |\hat{\varphi}_q(\eta)|^2 d\xi \, d\eta. \quad \ldots(3.22)
\]

In (3.22) we have used a change of variables and the fact that \(\nu > \eta/2 \) and \(\mu_1 > 0 \). The following lemma is found in Kato (1976, pp. 8-9).

Lemma 3.3 (Kato 1976, pp. 8-9) — There is a constant \(C \) such that

\[
\sum_j M_\delta(\xi - j^{\mu_1} \eta) \leq C(1 + |\eta|).
\]

Finally, since \((1 + |D|) K \) also belongs to the trace class (Kato 1976, p. 4), (3.22) and Lemma 3.3 imply

\[
| \langle Au, u \rangle | = \sum_j \langle A \psi, u \rangle
\]

\[
\leq C(2\pi)^{-n} \sum_q \lambda_q \int |\hat{u}(\xi)|^2 (1 + |\eta|) |\hat{\varphi}_q(\eta)|^2 d\xi \, d\eta
\]

(equation continued on p. 286)
\[\leq C'(2\pi)^{-n} \| u \|_{\mathcal{H}}^2 \sum_{q} \lambda_q \langle (1 + | D |) \varphi_q, \varphi_q \rangle \]
\[\leq C'(2\pi)^{-n} \text{tr}((1 + | D |) K) \| u \|_{\mathcal{H}}^2 . \]

This completes the proof of our main theorem.

The problem of proving Kato's question via Banach algebra technique is still open. The following convolution operator whose meaning should be interpreted in distributional sense might be an appropriate one:

\[b \ast g(x, \cdot, D) = \int b(w, y, \xi) e^{i(y+\xi) \cdot x} e^{-i\omega D} g(x, \cdot, D) e^{i\omega D} e^{-i(y+\xi) \cdot x} \, dw \, dy \, d\xi. \]

However, we were not successful in proving the L^2-continuity of (1.2) under the assumptions of Theorem 3.2, using the above operator.

ACKNOWLEDGEMENT

The author would like to express his thanks to Professor T. Kato for pointing out many errors in the original manuscript.

REFERENCES

