ON NÖRLUND SUMMABILITY OF FOURIER SERIES AND ITS CONJUGATE SERIES

L. M. TRIPATHI AND A. P. SINGH

Department of Mathematics, Banaras Hindu University, Varanasi 221005

(Received 17 February 1979; after revision 18 December 1979)

In this paper the authors have obtained two theorems for the Nörlund summability of Fourier series and its conjugate series respectively under very general conditions.

§1. Let \(\sum_{n=0}^{\infty} a_n \) be a given infinite series with the sequence of partial sums \(\{S_n\} \).

Let \(\{p_n\} \) be a sequence with \(p_0 > 0 \) and \(p_n \geq 0 \) for \(n > 0 \), and let

\[
P_n = p_0 + p_1 + p_2 + \ldots + p_n, \quad (P_{-1} = p_{-1} = 0).
\]

Let

\[
t_n = \sum_{v=0}^{n} \frac{p_{n-v} S_v}{P_n}, \quad (P_n \neq 0)
\]

or

\[
t_n = \sum_{v=0}^{n} \frac{p_{n-v} S_v}{P_n}, \quad \ldots(1.1)
\]

If \(t_n \to S \) as \(n \to \infty \) we write

\[
\sum_{n=0}^{\infty} a_n = S(N, p_n)
\]

or

\[
S_n \to S(N, p_n).
\]

The conditions of regularity of the method of summability \((N, p_n) \) defined by (1.1) is

\[
\lim_{n \to \infty} \frac{p_n}{P_n} = 0. \quad \ldots(1.2)
\]

§2. Let \(f(t) \) be \(2\pi \)-periodic function and \(L \)-integrable over an interval \((-\pi, \pi) \). Let the Fourier series of \(f(t) \) be given by

\[
\frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t) \quad \ldots(2.1)
\]
and then the conjugate series of (2.1) is

\[\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) \equiv \sum_{n=1}^{\infty} B_n(t). \] ...

(2.2)

We shall use the following notations:

\[\phi(t) = \phi(x, t) = f(x + t) + f(x - t) - 2f(x) \]

\[\psi(t) = \psi(x, t) = f(x + t) - f(x - t) \]

\[\Phi(t) = \int_{0}^{t} |\phi(u)| \, du \]

\[\Psi(t) = \int_{0}^{t} |\psi(u)| \, du \]

\[N_n(t) = \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \frac{\sin (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \]

\[\overline{N}_n(t) = \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \frac{\cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \]

\[p_{(1/t)} = p_\tau \quad \text{and} \quad P_{(1/t)} = P_\tau \]

where \(\tau \) denotes the integral part of \(1/t \).

§3. Siddiqi (1948) proved the following theorems:

Theorem A — If

\[\Phi(t) = \int_{0}^{t} |\phi(u)| \, du = o \left[\frac{t}{\log \left(\frac{1}{t} \right)} \right] \]

...(3.1)

as \(t \to +0 \), then the series (2.1), at \(t = x \), is summable \((H)\) to \(f(x) \).

He also proved the corresponding theorem for the conjugate series (2.2). His theorem concerning the conjugate series is

Theorem B — If

\[\Psi(t) = \int_{0}^{t} |\psi(u)| \, du = o \left[\frac{t}{\log \left(\frac{1}{t} \right)} \right] \]

...(3.2)
as \(t \to +0 \), then the conjugate series (2.2) is summable \((H)\) to

\[
\frac{1}{2\pi} \int_{0}^{\pi} \psi(t) \cot \frac{1}{4} t \, dt,
\]

at points where this integral exists.

In this direction, Pati (1961) has proved the following theorem.

Theorem C — If \((N, p_n)\) be a regular Nörlund method, defined by a real, non-negative, monotonic non-increasing sequence of coefficients \(\{p_n\}\), such that \(P_n \to \infty\), and \(\log n = O(P_n)\), as \(n \to \infty\), then, if

\[
\Phi(t) = \int_{0}^{t} |\phi(u)| \, du = o \left[t/P_\lambda \right]
\]

as \(t \to +0 \), the Fourier series of \(f(t)\), at \(t = x\), is summable \((N, p_n)\) to \(f(x)\).

The object of the present paper is to obtain, for the Nörlund summability of Fourier series and its conjugate series a criterion of a different type replacing the conditions (3.1) and (3.2) by more general conditions. We prove the following theorems.

§4. **Theorem 1** — Let \(\lambda(t)\) and \(K(t)\) be two positive functions. If

\[
\Phi(t) = \int_{0}^{t} |\phi(u)| \, du = o \left[\lambda(1/t) P_\lambda/K(P_\lambda) \right], \quad \text{as} \quad t \to 0
\]

and

\[
\lambda(n) P_n = O \left[K(P_n) \right]
\]

as \(n \to \infty \), then Fourier series of \(f(t)\) at \(t = x\) is summable \((N, p_n)\) to \(f(x)\) where \(\{p_n\}\) is a real non-negative and non-increasing sequence such that \(P_n \to \infty\), as \(n \to \infty\).

Theorem 2 — Let the sequence \(\{p_n\}\) and the functions \(\lambda(t)\) and \(K(t)\) be the same as in Theorem 1. Then if,

\[
\Psi(t) = \int_{0}^{t} |\psi(u)| \, du = o \left[\lambda(1/t) P_\lambda/K(P_\lambda) \right]
\]

as \(t \to +0 \), then the conjugate series (2.2) is summable \((N, p_n)\) to

\[
\frac{1}{2\pi} \int_{0}^{\pi} \psi(t) \cot \frac{1}{4} t \, dt
\]

at every point where this integral exists. For the proof of our theorems we need the following lemmas.
Lemma 1 (McFadden 1942) — If \(\{p_n\} \) is non-negative and non-increasing, then for \(0 \leq a < b \leq \infty \), \(0 \leq t \leq \pi \), and any \(n \)

\[
\left| \sum_{v=a}^{b} p_v e^{i(n-v)t} \right| \leq A P \pi,
\]

where \(A \) is an absolute constant.

Lemma 2 — If \(0 \leq t \leq \frac{1}{n} \), then

\[
N_n(t) = O(n),
\]

we have

\[
| N_n(t) | = \frac{1}{2\pi P_n} \left| \sum_{v=0}^{n} p_v \frac{\sin (n - v + \frac{1}{2}) t}{\sin \frac{1}{2} t} \right|
\]

\[
= O \left\{ P_n^{-1} \sum_{v=0}^{n} p_v \frac{(2n - 2v + 1) | \sin \frac{1}{2} t |}{| \sin \frac{1}{2} t |} \right\}
\]

\[
= O \left\{ (2n + 1) P_n^{-1} \sum_{v=0}^{n} p_v \right\}
\]

\[
= O(n), \quad \text{as} \quad n \to \infty.
\]

Lemma 3 — For \(\frac{1}{n} \leq t \leq \delta < \pi \),

\[
N_n(t) = O [P \pi / P_n t].
\]

Proof: We have

\[
| N_n(t) | = \frac{1}{2\pi P_n} \left| \sum_{v=0}^{n} p_v \frac{\sin (n - v + \frac{1}{2}) t}{\sin \frac{1}{2} t} \right|
\]

\[
= \frac{1}{2\pi P_n | \sin \frac{1}{2} t |} \left| \Im \sum_{v=0}^{n} p_v \exp (i(n - v + \frac{1}{2}) t) \right|
\]

\[
= \frac{1}{2\pi P_n | \sin \frac{1}{2} t |} \left| \Im \left(e^{it/2} \sum_{v=0}^{n} p_v \exp (i(n - v) t) \right) \right|
\]

\[
\leq \frac{1}{2\pi P_n t} \left| \sum_{v=0}^{n} p_v \exp (i(n - v) t) \right|
\]

\[
= O [P \pi / P_n t], \quad \text{by Lemma 1}.
\]
Lemma 4 — If \(\frac{1}{n} \leq t \leq \delta < \pi \), then

\[
\bar{N}_n(t) = \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} p_{\nu} \frac{\cos(n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t}
\]

\[
= O \left[P_{\nu}/P_n t \right].
\]

The proof is similar to that of Lemma 3.

§5. Proof of the Theorem 1 — Let

\[
S_n(x) = \sum_{\nu=1}^{n} A_{\nu}(x)
\]

then, we have

\[
S_n(x) - f(x) = \frac{1}{2\pi} \int_{0}^{\pi} \phi(t) \frac{\sin(n + \frac{1}{2}) t}{\sin \frac{1}{2} t} dt.
\]

Using (1.1), we get

\[
t_n - f(x) = P_n^{-1} \sum_{\nu=0}^{n} p_{\nu} [S_{n-\nu}(x) - f(x)]
\]

\[
= P_n^{-1} \sum_{\nu=0}^{n} p_{\nu} \frac{1}{2\pi} \int_{0}^{\pi} \phi(t) \frac{\sin(n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} dt
\]

\[
= \int_{0}^{\pi} \phi(t) \left\{ \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} p_{\nu} \frac{\sin(n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \right\} dt
\]

\[
= \int_{0}^{\pi} \phi(t) N_n(t) dt \text{ (} = M \text{ say).}
\]

In order to prove the theorem, we have to show that, under our assumptions,

\[
\int_{0}^{\pi} \phi(t) N_n(t) dt = o(1), \text{ as } n \to \infty.
\]

We write, for \(0 < \delta < \pi \)

\[
\int_{0}^{\pi} \phi(t) N_n(t) dt = [\int_{0}^{1/n} + \int_{1/n}^{\delta} + \int_{\delta}^{\pi}] \phi(t) N_n(t) dt.
\]

\[
= M_1 + M_2 + M_3, \text{ say.} \quad \ldots(5.1)
\]
Now, by Lemma 2,
\[M_1 = O \left[n \int_0^{1/n} | \phi(t) | \, dt \right] \]
\[= o \left[n \lambda(n) p_n / K(P_n) \right]. \]

By assumption that \(\{ p_n \} \) is non-negative, monotonic non-increasing, we have obviously \((n + 1) p_n \ll P_n \), therefore
\[M_1 = o \left[\lambda(n) P_n / K(P_n) \right] \]
\[M_1 = o(1), \quad \text{as} \quad n \rightarrow \infty. \] \(\ldots(5.2) \)

Again by Lemma 3,
\[M_2 = \int_{1/n}^{\delta} \phi(t) N_n(t) \, dt \]
\[= O \left[P_n^{-1} \int_{1/n}^{\delta} | \Phi(t) | \frac{P_t}{t} \, dt \right] \]
\[= O \left[P_n^{-1} \left(\Phi(t) \frac{P_t}{t} \right)_{1/n}^{\delta} \right] \]
\[+ O \left[\int_{1/n}^{\delta} P_n^{-1} \Phi(t) \frac{P_t}{t^2} \, dt \right] + O \left[\int_{1/n}^{\delta} P_n^{-1} \Phi(t) \frac{1}{t} \, dP_t \right] \]
\[= M_{2,1} + M_{2,2} + M_{2,3}, \quad \text{say.} \]

Now
\[M_{2,1} = O \left[P_n^{-1} \left(\Phi(t) \frac{P_t}{t} \right)_{1/n}^{\delta} \right] \]
\[= O \left[P_n^{-1} \right] + o \left[\frac{\lambda(n) p_n}{K(P_n)} n P_n \right] \]
\[M_{2,2} = o(1), \quad \text{as} \quad n \rightarrow \infty. \] \(\ldots(5.3) \)

\[M_{2,2} = O \left[P_n^{-1} \int_{1/n}^{\delta} \Phi(t) \frac{P_t}{t^2} \, dt \right] \]
\[= o(1) + P_n^{-1} \sum_{m=1}^{n-1} \int_m^{m+1} \Phi(1/v) P_{[v]} \, dv \]
\[\int \Phi(1/v) P_{[v]} \, dv \leq \Phi(1/m) \, P_m \]
\[= o \left(\frac{\lambda(m) \, p_m}{K(P_m)} \right) \]
\[= o \left[P_m \right], \quad \text{as} \quad m \to \infty \]

so
\[M_{2.3} = o(1) + o \left[P_n^{-1} \, \sum_{m=1}^{n-1} P_m \right] \]

\[M_{2.3} = o(1) \] ... (5.4)

and finally by the hypothesis of the theorem, we have

\[M_{2.3} = \int_{1/n}^{\infty} \Phi(t) \frac{1}{t} \, dP_t \]
\[= P_n^{-1} \int_{1/n}^{\infty} \Phi(1/v) \, v \, dP_{[v]} \]
\[= o(1) + O \left(P_n^{-1} \sum_{m=1}^{n-1} m p_m \Phi(1/m) \right) \]
\[= o(1) + o \left\{ P_n^{-1} \sum_{m=1}^{n-1} P_m \Phi(1/m) \right\} \]
\[= o(1) + o \left[P_n^{-1} \sum_{m=1}^{n-1} P_m \frac{\lambda(m) \, p_m}{K(P_m)} \right] \]

\[M_{2.3} = o(1), \quad \text{as} \quad n \to \infty. \] ... (5.5)

Collecting (5.3), (5.4) and (5.5) we get

\[M_2 = o(1). \] ... (5.6)

Lastly, by virtue of Riemann-Lebesgue theorem and regularity of the method of summation, we have

\[M_3 = \int_{\frac{1}{2}}^{\pi} \phi(t) \, N_\pi(t) \, dt \]
\[= o \left[P_n^{-1} \sum_{v=0}^{n} p_v \right] \]

\[M_3 = o(1), \quad n \to \infty. \] ... (5.7)
Hence on collecting (5.2), (5.6) and (5.7), we get

\[M = o(1) \]

which completes the proof of Theorem 1.

§6. Proof of the Theorem 2 — Let \(\tilde{S}_n(x) \) denote the nth partial sum of the series \(\Sigma B_n(x) \). Then we have

\[\tilde{S}_n(x) = \frac{1}{2\pi} \int_0^\pi \psi(t) \frac{\cos \frac{1}{2} t - \cos (n + \frac{1}{2}) t}{\sin \frac{1}{2} t} \, dt. \]

For \(\Sigma B_n(x) \), making use of the formula (1.1), we get

\[\tilde{r}_n - \frac{1}{2\pi} \int_0^\pi \psi(t) \cot \frac{1}{2} t \, dt = P_n^{-1} \sum_{\nu=0}^n p_\nu \tilde{S}_{n-\nu}(x) \]

\[- \frac{1}{2\pi} \int_0^\pi \psi(t) \cot \frac{1}{2} t \, dt \]

\[= P_n^{-1} \sum_{\nu=0}^n p_\nu \frac{1}{2\pi} \int_0^\pi \psi(t) \frac{\cos \frac{1}{2} t - \cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \, dt \]

\[- \frac{1}{2\pi} \int_0^\pi \psi(t) \cot \frac{1}{2} t \, dt \]

\[= - \int_0^\pi \psi(t) \left\{ \frac{1}{2\pi P_n} \sum_{\nu=0}^n p_\nu \frac{\cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \right\} \, dt \]

\[= - \int_0^\pi \psi(t) \tilde{N}_n(t) \, dt \ (= R \text{ say}). \]

In order to prove the theorem, we have to show that, under our assumptions

\[\int_0^\pi \psi(t) \tilde{N}_n(t) \, dt = o(1), \]

as \(n \to \infty \).

For \(0 < \delta < \pi \), we have

\[\int_0^\pi \psi(t) \tilde{N}_n(t) \, dt = \left[\int_0^{1/n} + \int_{1/n}^\delta + \int_0^\pi \right] \psi(t) \tilde{N}_n(t) \, dt \]

\[R = R_1 + R_2 + R_3, \text{ say.} \]

...(6.1)
Since the conjugate function exists, therefore

\[\frac{1}{2\pi} \int_0^{1/n} \psi(t) \cot \frac{1}{2} t \, dt = o(1). \]

Also

\[\frac{1}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \frac{\cos \frac{1}{2} t - \cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \]

\[= \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \sum_{k=0}^{n-\nu} 2 \sin kt \]

\[= O \left[\sum_{\nu=0}^{n} P_{\nu} \sum_{k=0}^{n-\nu} \left| \sin kt \right| \right] \]

\[= O \left[\sum_{\nu=0}^{n} P_{\nu} (n - \nu) \right] \]

\[= O(n), \quad \text{for} \quad 0 \leq t \leq \pi. \]

Therefore

\[R_1 = \frac{1}{n} \int_0^{1/n} \psi(t) \, d\bar{N}_n(t) \, dt \]

\[= \int_0^{1/n} \frac{\psi(t)}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \frac{\cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \, dt \]

\[= - \int_0^{1/n} \frac{\psi(t)}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \frac{\cos \frac{1}{2} t - \cos (n - \nu + \frac{1}{2}) t}{\sin \frac{1}{2} t} \, dt \]

\[+ \frac{1}{2\pi P_n} \sum_{\nu=0}^{n} P_{\nu} \int_0^{1/n} \psi(t) \, \cot \frac{1}{2} t \, dt \]

\[= O(n \int_0^{1/n} |\psi(t)| \, dt) + o(1) \]

\[= O[n \Psi(1/n)] + o(1) \]

\[= o[n \lambda(n) p_n/K(P_n)] \]

\[= o[\lambda(n) P_n/K(P_n)] \]

\[R_1 = o(1), \quad \text{since} \quad np_n \leq P_n. \]

...(6.2)
Now, for $1/n \leq t \leq \delta$

$$R_2 = O\left[\int_{1/n}^{\delta} |\psi(t)| \, |\bar{N}_n(t)| \, dt \right]$$

$$= O\left[\int_{1/n}^{\delta} |\psi(t)| \, \frac{P_x}{P_n} \, dt \right]$$

$$R_2 = o(1), \text{ as in } M_2. \quad \ldots(6.3)$$

Also

$$R_2 = o(1) \quad \ldots(6.4)$$

by virtue of Riemann-Lebesgue theorem and the regularity of the method of summation.

Hence on collecting (6.2), (6.3) and (6.4), we get

$$R = o(1)$$

which completes the proof of Theorem 2.

ACKNOWLEDGEMENT

The authors are thankful to the referee for his generous suggestions.

REFERENCES

