THE FREDHOLM INDEX OF A CLASS OF VECTOR-VALUED
SINGULAR INTEGRAL OPERATORS

NAZIH S. FAOUR

Department of Mathematics, Kuwait University, Kuwait

(Received 11 April 1979)

In this paper the operators of interest are the singular integral operators T
defined on $L^2_n(E)$ by

$$Tf(s) = sf(s) + \frac{B^*(s)}{\pi} \int_{E} \frac{B(t)f(t)}{s - t} \, dt.$$

In particular it is shown that a real number x is in the essential resolvent of T
if and only if there is a neighbourhood Δ of x such that the Lebesgue measure
of $\Delta - E$ equals zero, and $\inf_{t \in \Delta} |\det B(t)| > 0$. Moreover, in this case
the index of $T - x$ is $-n$.

INTRODUCTION

Let E be a bounded measurable subset of the real line R, and $B \in L^\infty_{M_n}(E)$,
where the space $L^\infty_{M_n}(E)$ is the set of all $n \times n$ matrices (ϕ_{ij}) ($1 \leq i, j \leq n$),
such that each of the functions $\phi_{ij} \in L^\infty(E)$. The notation $L^2_n(E)$ will denote the usual Lebesgue
space of \mathbb{C}^n valued square integrable functions on E. The operators of interest are the
singular integral operators T defined on $L^2_n(E)$ by

$$Tf(s) = sf(s) + \frac{B^*(s)}{\pi} \int_{E} \frac{B(t)f(t)}{s - t} \, dt.$$

The singular integral operator T is hyponormal on $L^2_n(E)$, that is, the self-commutator
$[T^*, T] = T^*T - TT^*$ of T is a non-negative operator, moreover $[T^*, T]$ is n-dimen-
sional. It should be remarked that a complete description of the Fredholm behaviour
of the operator $T - z$, for z complex, has been given for the case $n = 1$ (see Clancey
1974a). In this paper a characterization is given for the Fredholm behaviour of
$T - x$, where $x \in R$ and $n > 1$.

Section 1 is concerned with some technical machinery needed for this paper. In
section 2 we prove that $T - x$ is Fredholm if and only if there exists a neighbour-
hood Δ of x such that the Lebesgue measure of $\Delta - E$ equals zero. In section 3,
the definition of the principal function and some of its properties are given. In
section 4, we prove that index of \(T - x = -n \).

1. Preliminaries

Let \(z \) be any non-real complex number and let the function \(f \) be an element
of \(L^2_n(R) \). The Cauchy transform of \(f \), denoted by \(Cf \), is equal to \((Cf_j)_{j=1}^n \) where

\[
Cf_j(z) = \frac{1}{2\pi i} \int_R \frac{f(t)}{t - z} \, dt, \text{ for } 1 \leq j \leq n. \quad \ldots(1.1)
\]

Each function \(Cf_j (1 \leq j \leq n) \) is separately holomorphic in the upper half-plane and
lower half-plane. Moreover, the functions \(f_j^\pm \) defined by \(f_j^\pm(x) = \lim_{y \to 0^\pm} Cf_j(x \pm iy) \)
exist almost everywhere. The function \(f_j^+ (1 \leq j \leq n) \) is in \(H^2 \) and \(f_j^- \) is in \(\overline{H^2} \), where
the space \(H^2 \) is the usual Hardy space, and \(\overline{H^2} \) is its complex conjugate.

For \(f \in L^2_n(R) \), write \(f^\pm \) for \((f_j^\pm)_{j=1}^n \). The functions \(f^\pm \) satisfy the Plemelj
identities

\[
f^+ - f^- = f, \quad f^+ + f^- = (1/i) Hf. \quad \ldots(1.2)
\]

Here, \(Hf = (Hf_j)_{j=1}^n \) is the Hilbert transform of \(f \). The map \(f \to Hf \) is a bounded
linear operator on \(L^2_n(R) \) and this implies that the maps \(f \to f^\pm \) are bounded in
\(L^2_n(R) \). For the boundedness of the Hilbert transform see Neri (1971).

The Riemann-Hilbert barrier operator with symbol \(G \in L^\infty_{M_n}(R) \) is the bounded
linear operator \(B_G \) defined on the space \(L^2_n(R) \) by

\[
B_G f = Gf^+ - f^- \quad \ldots(1.3)
\]

The Toeplitz operator with symbol \(G \) is the bounded operator \(T_G \) on \(H^2_n \) defined by

\[
T_G f = P(Gf). \quad \ldots(1.4)
\]

Here \(P \) stands for the orthogonal projection of \(L^2_n(R) \) onto \(H^2_n \). The operator \(P \) is
given by

\[
Pf = \frac{1}{i}(f - iHf). \quad \ldots(1.5)
\]

It is known that \(T_G \) is Fredholm if and only if \(B_G \) is Fredholm. Moreover, they have
the same Fredholm index.
Let H be a Hilbert space and let $L(H)$ denote the algebra of all bounded operators on $L(H)$. An operator T in $L(H)$ is called Fredholm in case T has closed range, and $\dim (\ker T), \dim (\ker T^*)$ are finite. The index of a Fredholm operator T is defined by

$$\text{ind} (T) = \dim (\ker T) - \dim (\ker T^*). \quad \ldots (1.6)$$

The essential spectrum of T, denoted by $\sigma_e(T)$, is the set of all λ in the field of complex numbers \mathbb{C} such that $T - \lambda$ is not Fredholm. The essential resolvent of T, denoted by $\rho_e(T)$, is the set of all $\lambda \in \mathbb{C}$, such that $\lambda \not\in \sigma_e(T)$.

Let $G \in L_{M_n}^\infty (R)$. For λ in R the cluster set of G at λ, denoted by $\mathcal{C}(G : \lambda)$, is the set of all $n \times n$ matrices M such that the set

$$\{t \in R : \|G(t) - M\| < \epsilon\} \cap N$$

has positive measure for every $\epsilon > 0$ and every neighbourhood N of λ.

2. The Essential Spectrum

Let E be a bounded measurable subset of the real line R, and $B \in L_{M_n}^\infty (E)$ such that

$$\text{ess inf} \inf_{t \in E} |\det B(t)| > 0. \quad \ldots (2.1)$$

The operators of interest are the singular integral operators T defined on $L_n^2 (E)$ by

$$Tf(s) = sf(s) + \frac{B^*(s)}{\pi} \int_E \frac{B(t)f(t)}{s - t} \, dt. \quad \ldots (2.2)$$

Since $(T^*T - TT^*)f(s) = \frac{2}{\pi} B^*(s) \int_E B(t)f(t) \, dt$, it follows that the operator T is hyponormal with n-dimensional self-commutator.

Note that with the hypothesis (2.1), the operator T defined in (2.2) is similar to the operator S defined on $L_n^2 (E)$ by

$$Sf(s) = sf(s) + \frac{B(s)B^*(s)}{\pi} \int_E \frac{f(t)}{s - t} \, dt. \quad \ldots (2.3)$$

Let x be a real number. From (2.1) we can say that

$$\text{ess inf} \inf_{s \in E} \| (s - x) I + i(B(s)B^*(s)) \| > 0. \quad \ldots (2.4)$$
The symbol of the operator $S - x$ is the function

$$G_x(s) = \begin{cases} \frac{(s - x) I - i BB^*(s)}{(s - x) I + i BB^*(s)}, & s \in E \\ I, & s \notin E \end{cases} \quad \ldots(2.5)$$

where I is the $n \times n$ identity matrix.

Before proving the main theorem of this section some technical lemmas are needed.

Lemma 2.1 — If $G \in L^\infty_{M_n}(R)$ and for some $\epsilon > 0$, $\text{Re} \ G(t) \geq \epsilon I$ almost everywhere, then the Riemann-Hilbert barrier operator B_G is invertible.

Proof: For proof of the lemma see Clancey (1974b).

There are localization techniques due to Simonenko that will be useful in establishing when certain Riemann-Hilbert barrier operators are Fredholm.

Let G_1 and G_2 be symbols of the Riemann-Hilbert barrier operators B_{G_1} and B_{G_2}, respectively. Let x_0 be a fixed real number. The operators B_{G_1} and B_{G_2} are said to be locally equal at x_0 in case there is a neighbourhood U of x_0 such that $G_1(t) = G_2(t)$, for all $t \in U$. The operator B_{G_1} is said to be locally Fredholm at $x_0 \in R$ in case B_{G_1} is locally equal to a Fredholm barrier operator B_{G_2} at x_0.

The following lemma is a special case of a result of Simonenko (1964).

Lemma 2.2 — Let $G \in L^\infty_{M_n}(R)$. If the Riemann-Hilbert barrier operator B_G, acting on $L^2_n(R)$, is locally Fredholm at each $x \in R$, then B_G is a Fredholm operator.

The Riemann-Hilbert barrier operators B_{G_1} and B_{G_2} are said to be locally equivalent at $x_0 \in R$, if for every $\epsilon > 0$, there exists a neighbourhood of the point x_0 such that

$$\| (B_{G_1} - B_{G_2}) P_U \| = \inf \| (B_{G_1} - B_{G_2}) P_U - K \| < \epsilon \quad \ldots(2.6)$$

where K runs through the ideal of compact operators on $L^2_n(R)$, and the operator P_U is defined on $L^2_n(R)$ by

$$P_U f(x) = \chi_U f(x) \quad \ldots(2.7)$$

where χ is the characteristic function of U. The following lemma also appears in Simonenko (1964).
Lemma 2.3 — Let G_1 and G_2 be in $L_{\mathcal{M}_a}^\infty (R)$ and suppose B_{G_1} and B_{G_2} are locally equivalent at x_0 in R. Then B_{G_1} is locally Fredholm at x_0 if and only if B_{G_2} is locally Fredholm at x_0.

The main theorem of this section is the following:

Theorem 2.1 — If x is a real number, then x is an element of the essential resolvent of S if and only if there exists a neighbourhood Δ of x such that the Lebesgue measure of $\Delta - E$ equals zero.

Proof: Let G_x be the symbol of the operator $S - x$ defined by (2.5). Since it is known that $S - x$ is Fredholm if and only if the Riemann-Hilbert barrier operator B_{G_x} is Fredholm, it suffices to prove Theorem 2.1 for the operator B_{G_x}.

Suppose that there is no neighbourhood Δ of x such that the Lebesgue measure of $\Delta - E$ equals zero. Then it follows that the cluster set $C(G_x : x)$ of G_x at x is $\{I, -I\}$. Since there exists a $0 \leq \lambda \leq 1$ ($\lambda = \frac{1}{2}$) such that

$$\det ((1 - \lambda) I + \lambda(-I)) = 0$$

it follows by a result of Clancey (1974b, Theorem 3.2) that the operator B_{G_x} is not Fredholm.

Suppose for some neighbourhood Δ of x the Lebesgue measure of $\Delta - E$ equals zero. Since $C(G_x : x) = \{-I\}$, it follows that B_{G_x} and B_{-I} are locally equivalent at x. By Lemma 2.3, B_{G_x} is locally Fredholm at x. Let $t_0 \in R$ and suppose that $t_0 < x$ (a similar argument handles the case in which $t_0 \geq x$). It is clear that

$$C(G_x : t_0) \subseteq \{I\} \cup \left\{ \frac{(t_0 - x)I - iA}{(t_0 - x)I + iA} : A \in C(BB^* : t_0) \right\}. \quad \text{(2.8)}$$

Fix such an A, and let

$$C = \frac{(t_0 - x)I - iA}{(t_0 - x)I + iA}. \quad \text{(2.9)}$$

It can be concluded from (2.1) and (2.9) that there is a $\beta > 0$ (independent of the choice of A in $C(BB^* : t_0)$) such that $\text{Im} (C) > \beta I$. Let $M \in C(-iG_x : t_0)$, then $M = -iI$ or $\text{Re} M > \alpha I$. For θ small, there is a $\alpha' = \omega(\theta)$ such that $\text{Re} Q > \alpha' I$, where $Q \in C(-ie^{i\theta}G_x : t_0)$. Fix such a θ. Let $0 < \epsilon < \frac{1}{2}x'$, and choose a neighbourhood N_ϵ of t_0 such that for $t \in N_\epsilon (t_0)$,

$$\text{dist} (-ie^{i\theta}G_x(t), C(-ie^{i\theta}G_x : t_0)) < \epsilon. \quad \text{(2.10)}$$

From above it follows that $\text{Re} (-ie^{i\theta}G_x(t)) \geq \frac{1}{2}x'I$ for $t \in N_\epsilon (t_0)$. Define the function $H(t)$ as follows:

$$H(t) = \begin{cases} -ie^{i\theta}G_x(t), \ t \in N_\epsilon (t_0) \\ Q_0, \ t \notin N_\epsilon (t_0) \end{cases} \quad \text{(2.11)}$$
where Q_0 is any fixed element in $C(-ie^{i\theta}G_x : t_0)$. Since $H \in L^\infty_{M,M} (R)$ and
$\Re H(t) > \frac{1}{2} a' I$, by Lemma 2.1 the Riemann-Hilbert barrier operator B_H on
$L^2_a (R)$ is Fredholm. Since $H(t)$ is equal to $-ie^{i\theta}G_x(t)$ for $t \in N_a(t_0)$ it follows
that B_G_x is locally Fredholm at t_0. Therefore, B_G_x is locally Fredholm at every $t \in R$. Hence,
by Lemma 2.2, the operator B_G_x is Fredholm, and this ends the proof of
the theorem.

Corollary 2.1 — Let T be the singular integral operator defined by (2.2). Then
a real number x is in the essential resolvent of T if and only if there exists a neighbour-
hood Δ of x such that the Lebesgue measure of $\Delta - E$ equals zero.

PROOF : The operators S and T are similar.

3. **THE PRINCIPAL FUNCTION**

In order to show that the Fredholm index of $T - x$ is $-n$, some properties
of the principal function of T are needed. For the sake of completeness the
definition of the principal function of T and some of its basic properties are presented
in this section.

Let H be a separable complex Hilbert space. An operator J on H is said to
be completely non-normal if there exists no reducing sub-space of J on which J is
normal. The operator J is a trace class operator if $\sum_j (J*J)^{1/2} \phi_i, \phi_j < \infty$ for an
orthonormal basis $\{\phi_k\}$ of H. The trace of the operator J, denoted by

$$tr(J) = \sum_j (J\phi_j, \phi_j).$$

Let $A = X + iY$ be the Cartesian decomposition of a bounded operator on
H, such that A is completely non-normal hyponormal operator with trace class
self-commutator. Helton and Howe (1973) have associated with the operator A, a set function $\tilde{\mu}$ defined on the collection σ of semi-closed rectangles in the following
manner:

Let $\alpha = [a, b)$ and $\beta = [c, d)$ be half-open intervals such that $\alpha \times \beta \in \sigma$. Denote by $\int_R \lambda E(\lambda)$, and $\int_R \lambda F(\lambda)$ the spectral resolutions of the operators X and
$E(\alpha)Y E(\alpha)$, respectively. The set function $\tilde{\mu}$ is defined on $\alpha \times \beta$ by

$$\tilde{\mu}(\alpha \times \beta) = tr(E(\alpha) F(\beta) E(\alpha) [A^*, A]).$$

These authors established that $\tilde{\mu}$ extends to a non-negative regular Borel
measure μ of bounded total variation on the plane. Pincus (1979) (see also Carey
and Pincus 1974) has established that \(\mu \) is absolutely continuous with respect to planar Lebesgue measure. The derivative

\[
g = \frac{\pi}{d} \frac{d\mu}{d\gamma}
\]

...(3.2)

is called the principal function of the operator \(A \). The following is a summary of some of the principal functions associated with the operator \(A \).

(i) On a component of the complement of the essential spectrum of \(A \), \(g(\lambda) = \text{ind} (A - \lambda) \). For a proof, see Helton and Howe (1973).

We will need some further notation before describing the next property of the principal function. Let \(\int_{\mathbb{R}} \lambda \, dE(\lambda) \) be the spectral resolution of \(X \), and let \(\Delta \) be a Borel set in the real line \(\mathbb{R} \). Denote the Hilbert space \(E(\Delta)H \) by \(H_{\Delta} \). The operator \(A_{\Delta} \) on \(H_{\Delta} \) is defined by \(A_{\Delta}f = E(\Delta)Af \). It is known that \(A_{\Delta} \) is completely non-normal hyponormal operator with trace class self-commutator. Let \(g_{\Delta} \) be the principal function of \(A_{\Delta} \).

(ii) The principal functions \(g \) and \(g_{\Delta} \) of the operators \(A \) and \(A_{\Delta} \) are related by

\[
g_{\Delta} = g_{\chi_{\Delta \times \mathbb{R}}}
\]

...(3.3)

here, \(\chi_{\Delta \times \mathbb{R}} \) denotes the characteristic function of \(\Delta \times \mathbb{R} \). For a proof, see Carey and Pincus (1977).

4. The Fredholm Index

Let \(x \in \mathbb{R} \) be in the essential resolvent of \(T \), and in the spectrum of \(T \), where the operator \(T \) has been defined by (2.2). In this section it is shown that

\[
\text{ind} (T - x) = -n.
\]

Note that \(C(C_x : x) = \{-I\} \). Choose a small open ball \(D \) centered at \(-I\) so that \(D \) is contained in \(G(n : \emptyset) \). From this, it follows that there exists a small neighbourhood \(\Delta = (x - \xi, x + \xi) \) contained in \(E \) such that the closed convex hull of the essential range of \(G_x \) restricted to \(\Delta \) is contained in \(D \). Define the function \(G_{\Delta}^x \) as follows:

\[
G_{\Delta}^x(s) = \begin{cases}
\frac{(s - x)I - iB(s)B^*(s)}{(s - x)I + iB(s)B^*(s)}, & s \in \Delta \\
I, & s \notin \Delta.
\end{cases}
\]

...(4.1)

This is the symbol of the singular integral operator \(T_{\Delta} - x \) defined on \(L^2_n(\Delta) \).
Theorem 4.1 — The operator $T - x$ is Fredholm if and only if the operator $T_\Delta - x$ is Fredholm. Moreover,
\[\text{ind } (T_\Delta - x) = \text{ind } (T - x). \]

Proof: Putnam (1970) has shown that x is in the essential resolvent of T if and only if x is in the essential resolvent of T_Δ. Also, using properties (i) and (ii) of the principal function, it follows easily that $\text{ind } (T - x) = \text{ind } (T_\Delta - x)$, and this ends the proof.

From Theorem 4.1, it suffices to show that $\text{ind } (T_\Delta - x) = -n$. Since $T_\Delta - x$ is Fredholm if and only if $B_{G_\Delta}^\Delta$ is Fredholm, and $\text{ind } (T_\Delta - x) = \text{ind } (B_{G_\Delta}^\Delta)$, it suffices to show that $\text{ind } (B_{G_\Delta}^\Delta) = -n$. To establish our result, we proceed as follows:

Let η be a function from $[x - \xi, x + \xi]$ into $[0, 1]$ such that η is continuous, $\eta(x - \xi) = 0$ and $\eta(x + \xi) = 1$. Define the function \tilde{G} as follows:
\[\tilde{G}(t) = \begin{cases}
(1 - \eta(t)) U^+ + \eta(t) U^-, & t \in \Delta \\
I, & t \notin \Delta
\end{cases} \tag{4.2} \]
where U^\pm are different from the identity $n \times n$ matrix I, and $U^\pm \in C(G_\Delta^\Delta : x \mp \xi)$. Any element in $C(G_\Delta^\Delta : x \mp \xi)$ is either the matrix I, or a matrix of the form
\[((s - x) I + iA^\pm)^{-1} ((s - x) I - iA^\pm) \tag{4.3} \]
where A^+ is a cluster value from the right of BB^* at $x - \xi$, and A^- is a cluster value from the left of BB^* at $x + \xi$. Note that U^\pm are unitary. The function \tilde{G} is piecewise continuous, and it is clear from (Theorem 2.1, see Clancey 1974b), that the Riemann-Hilbert barrier operator $B_{\tilde{G}}$ is a Fredholm operator on $L_n^2(R)$.

For $0 \leq s \leq 1$ and t a real number, the function H will be defined in the following way:
\[H(s, t) = \begin{cases}
(1 - s) G_\Delta^\Delta(t) + s \tilde{G}(t), & t \in \Delta \\
I, & t \notin \Delta
\end{cases} \tag{4.4} \]

Theorem 4.2 — The Riemann-Hilbert barrier operator $B_{H(s, \cdot)}$ is a Fredholm operator on $L_n^2(R)$, and
\[\text{ind } (B_{G_\Delta}^\Delta) = \text{ind } (B_{\tilde{G}}). \]
PROOF: It has already been observed that the operators $B_{H(0,\cdot)} = B_{G^\Delta}$, and $B_{H(1,\cdot)} = B_G$ are Fredholm operators.

Let s be a fixed real number between 0 and 1. If $t_0 \not\in \Delta$, then the Riemann Hilbert barrier operator $B_{H(s,\cdot)}$ is locally equal to the Fredholm Riemann-Hilbert barrier operator B_t at t_0. All that has to be shown now is that $B_{H(s,\cdot)}$ is locally Fredholm at t_0 in Δ.

For $t = x$, the Riemann-Hilbert barrier operator $B_{H(s,\cdot)}$ is locally equivalent to the Riemann-Hilbert barrier operator with symbol $(1 - s)(-I) + s \hat{G}(x)$, which is an element of D. It follows by Lemma 2.3 that $B_{H(s,\cdot)}$ is locally Fredholm at $t = x$. If $t \in \Delta$, t is different from x, then to show that the operator $B_{H(s,\cdot)}$ is locally Fredholm at t, we follow the argument of Theorem 2.1. For s fixed the operator $B_{H(s,\cdot)}$ is locally Fredholm at every $t \in R$. Hence, by Lemma 2.2, the operator $B_{H(s,\cdot)}$ is Fredholm.

Since the function $s \mapsto H(s,\cdot)$ from $[0, 1]$ to $L^\infty_{M_n}(R)$ is continuous, it follows that $\text{ind} \ (B_{H(0,\cdot)}) = \text{ind} \ (B_{H(1,\cdot)})$, in other words $\text{ind} \ (B_{G^\Delta}) = \text{ind} \ (B_G)$, and this ends the proof.

It is known that the Toeplitz operator T_G is Fredholm if and only if the Riemann-Hilbert barrier operator B_G is Fredholm, moreover they have the same Fredholm index. Gohberg and Krupnik (1968) have shown that the Fredholm index of T_G is equal to the negative of the winding number of $\det (\hat{G}^*)$ where \hat{G}^* is the curve obtained from the piecewise continuous function \hat{G} by joining the left and right hand limits by a line segment at points of discontinuity. From above it suffices to show that the winding number of $\det (\hat{G}^*)$ around zero is equal to n. In order to show that the winding number of $\det (\hat{G}^*)$ is equal to n, it is needed to be shown that the jump in the argument of $\det (\hat{G}^*)$ on sufficiently small Δ is close to n.

Let U^\pm be the unitary $n \times n$ matrices defined by (4.3). Since A^\pm is positive, the eigenvalues $e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i\theta_n}, 0 \leq \theta_j < 2\pi, 1 \leq j \leq n$ of U^+ are in the upper half-plane and close to -1. Similarly, the eigenvalues $e^{i\varphi_1}, \ldots, e^{i\varphi_n}, 1 \leq j \leq n$, of U^- are in the lower half-plane and close to -1. Since the matrices U^\pm are unitary, it follows that there exist unitary matrices V_\pm, such that
\[D^+ = V_+ U^+ V^*_+ = \begin{bmatrix} e^{i\theta_1} & 0 \\ 0 & e^{i\theta_n} \end{bmatrix} \]

and

\[D^- = V_- U^- V^*_- = \begin{bmatrix} e^{i\varphi_1} & 0 \\ 0 & e^{i\varphi_n} \end{bmatrix} \]

Since \(\tilde{G}(t) \) was defined in (4.2) by

\[\tilde{G}(t) = (1 - \eta(t)) U^+ + \eta(t) U^-, \text{ for } t \in \Delta \]

it follows that

\[
\det \tilde{G}(t) = \det \left((1 - \eta(t)) V^*_+ D^+ V_+ + \eta(t) V^*_- D^- V_- \right)
\]

\[= \det (V^*_+ V_-) \cdot \det \left((1 - \eta(t)) D^+ W + \eta(t) W D^- \right) \]

where \(W \) is the unitary matrix \(V_+ V^*_- \).

From the definition of the determinant, we see that \(\det \left((1 - \eta(t)) D^+ W + \eta(t) W D^- \right) \) can be written as follows:

\[
\sum_{\sigma \in P} (-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} \left((1 - \eta(t)) \ w_{ii} \ e^{i\theta_i} + \eta(t) \ w_{ii} \ e^{i\varphi_i} \right) \quad \ldots(4.5)
\]

where \(P \) is the set of all permutations on \(\{1, 2, \ldots, n\} \), and \(\epsilon(\sigma) \) is the sign of the permutation. The last expression (4.5) can be written in the following form

\[
\prod_{i=1}^{n} \left((1 - \eta(t)) \ w_{ii} \ e^{i\theta_i} + \eta(t) \ w_{ii} \ e^{i\varphi_i} \right)
\]

\[+ \sum_{P-(\tau)} (-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} \left((1 - \eta(t)) \ w_{i\sigma(i)} \ e^{i\theta_i} + \eta(t) \ w_{i\sigma(i)} \ e^{i\varphi_i} \right) \]

\[+ \sum_{P-(\tau)} (-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} \left((1 - \eta(t)) \ w_{i\sigma(i)} \ e^{i\varphi_i} + \eta(t) \ w_{i\sigma(i)} \ e^{i\varphi_i} \right) \]

\[- \sum_{P-(\tau)} (-1)^{\epsilon(\sigma)} \prod_{i=1}^{n} \left((1 - \eta(t)) \ w_{i\sigma(i)} \ e^{i\theta_i} + \eta(t) \ w_{i\sigma(i)} \ e^{i\varphi_i} \right) \]
where τ is the identity permutation. By adding the first term to the third, the following expression is obtained,

$$
\det W \prod_{i=1}^{n} ((1 - \eta(t)) e^{i\theta_i} + \eta(t) e^{i\psi_i})
$$

$$
+ \sum_{P-\{\tau\}} (-1)^{s(P)} \prod_{i=1}^{n} ((1 - \eta(t)) w_{i\sigma(i)} e^{i\theta_i} + \eta(t) w_{i\sigma(i)} e^{i\psi_i})
$$

$$
- \sum_{P-\{\tau\}} (-1)^{s(P)} \prod_{i=1}^{n} ((1 - \eta(t)) w_{i\sigma(i)} e^{i\theta_i} + \eta(t) w_{i\sigma(i)} e^{i\psi_i}).
$$

Since $e^{i\psi_i}$ can be chosen arbitrarily close to -1, the difference of the second and third terms in the last expression does not contribute significantly to the jump in the argument of $\det ((1 - \eta(t)) D^+ W + \eta(t) WD^-)$ on Δ. The jump of the argument of

$$
\det W \prod_{i=1}^{n} ((1 - \eta(t)) e^{i\theta_i} + \eta(t) e^{i\psi_i})
$$

can be made arbitrarily close to n by taking Δ sufficiently small. So we have established that the winding number of $\det (G^*)$ is n. The main result of this section is the following theorem.

Theorem 4.3 — Let T be the singular integral operator defined by (2.2), and assume that x is a real number such that some interval Δ containing x satisfies

(i) $\Delta \subset E$ and (ii) $\text{ess inf}_{t \in \Delta} |\det B(t)| > 0$.

The operator $T - x$ is Fredholm, and $\text{ind} (T - x) = -n$.

Proof: The fact that $T - x$ is Fredholm is a direct consequence of Theorem 2.1. The arguments given above established that if Δ is a sufficiently small neighbourhood of x, then the operator $T_\Delta - x$ has index $-n$. By Theorem 4.1, we conclude that

$$
\text{ind} (T - x) = \text{ind} (T_\Delta - x) = -n
$$

and that ends the proof.

References

