GENERALIZED COMPLEMENTS OF A GRAPH

E. SAMPATHKUMAR AND L. PUSHPA LATHA

Department of Mathematics, University of Mysore,
Mysore 570006

C. V. VENKATACHALAM AND PRADEEP BHAT

Department of Mathematics, Manipal Institute of Technology,
Manipal 576119

(Received 08 September 1997; Accepted 27 January 1998)

Let $G = (V, E)$ be a graph and $P = \{V_1, V_2, \ldots, V_k\}$ be a partition of V of order $k \geq 1$. For each set V_r in P, remove the edges of G inside V_r and add the edges \overline{G}, (the complement of G) joining the vertices V_r. The graph $G^p_k (i)$ thus obtained is called the $k(i)$-complement of G with respect to P. The graph G is $k(i)$-self complementary $(k(i)-s.c.)$ if $G^p_k (i) \equiv G$ for some partition P of V of order k. Further, G is $k(i)$-co-self complementary $(k(i)-c-o-s.c.)$ if $G^p_k (i) \equiv \overline{G}$.

We determine (1) all $k(i)$-s.c trees for $k = 2, 3$, and (2) $2(i)$-s.c. unicyclic graphs. Also, some necessary conditions for a tree/unicyclic graph to be $k(i)$-s.c. are obtained. We indicate how to obtain characterizations of all $k(i)$-co.s.c. trees, unicyclic graphs and forests from known results.

Key Words : Graphs; Complements; Trees; Unicyclic; Forests.

1. INTRODUCTION

Let $G = (V, E)$ be a graph and $P = \{V_1, V_2, \ldots, V_k\}$ be a partition of V of order $k \geq 1$. The k-complement G^p_k of G (with respect to P) is defined as follows: For all V_i and V_j in $P, i \neq j$, remove the edges between V_i and V_j, and add the edges which are not in G^p. The graph G is k-self complementary $(k-s.c)$ with respect to P if $G^p_k \equiv G$. For $2 \leq k \leq p$, characterizations of all k-self complementary trees, forests and unicyclic graphs are obtained in (1).

In this paper, we study another type of complement defined as follows :-

For each set V_r in the partition P, remove the edges of G inside V_r, and add the edges of \overline{G} (the complement of G) joining the vertices of V_r. The graph $G^p_k(i)$ thus obtained is called the $k(i)$-complement of G with respect to the partition P of V. The graph G is $k(i)$-self complementary $(k(i)-s.c.)$ if $G^p_k(i) \equiv G$ for some partition P of order k.
We observe that the Petersen graph is 2(i)-s.c. with respect to the partition \(V_1 = \{1, 2, 3, 4, 5\}, \ V_2 = \{1', 2', 3', 4', 5'\} \). Also, it is 2-s.c. with respect to the partition
\[
V_1 = \{1, 3, 4', 5'\}, \ V_2 = \{2, 4, 5, 1', 2', 3'\}. \ (\text{See Fig. 1}).
\]

![Fig. 1](image)

If \(G \) is a graph of order \(P \) and \(\overline{G} \) is the complement of \(G \), we note that

i) \(G^P_1 \equiv G \), and \(G^P_{1(i)} \equiv \overline{G} \), where \(P = \{V\} \), and

ii) \(G^P_p \equiv \overline{G} \), and \(G^P_{p(i)} \equiv \overline{G} \), where \(P \) is the partition of \(V \) into singleton sets.

A \(k(i) \)-complement is nontrivial if \(k < P \).

If \(G^P_k \equiv \overline{G} \), then \(G \) is \(k \)-co-self complementary (k-co-s.c.), and \(G \) is \(k(i) \)-co-self complementary (k(i)-co-s.c.) if \(G^P_{k(i)} \equiv \overline{G} \).

We determine (1) all \(k(i) \)-s.c. trees for \(k = 2, 3 \), and (2) all 2(i)-s.c., unicyclic graphs. Also, we obtain some necessary conditions for a tree/unicyclic graph to be \(k(i) \)-s.c. Further, we indicate how to obtain characterizations of all \(k(i) \)-co-s.c. trees, unicyclic graphs and forests from known results.

2. ELEMENTARY RESULTS

Proposition 1 — For any graph \(G \),

\[
i) \ G^P_k \equiv \overline{G}^P_k \quad \text{and} \quad ii) \ \overline{G}^P_{k(i)} \equiv \overline{G}^P_{k(i)}
\]

PROOF: i) Let \(u \) and \(v \) be two vertices in \(G \). Then \(u \) and \(v \) are adjacent in \(\overline{G}^P_k \)

\[\leftrightarrow u \text{ and } v \text{ are nonadjacent in } G^P_k.\]

\[\leftrightarrow u \text{ and } v \text{ are in the same set in } P, \text{ and are nonadjacent in } G, \text{ or they are in different sets in } P, \text{ and are adjacent in } G.\]

\[\leftrightarrow u \text{ and } v \text{ are in the same set in } P, \text{ and are adjacent in } \overline{G}, \text{ or they are in different sets in } P, \text{ and are nonadjacent in } \overline{G}.\]

\[\leftrightarrow u \text{ and } v \text{ are adjacent in } \overline{G}^P_k.\]
This proves (i).

\(ii \) \quad u \text{ and } v \text{ are adjacent in } G^P_{k(i)} \)

\[\iff \text{ they are nonadjacent in } G^P_{k(i)}. \]

\[\iff u \text{ and } v \text{ are in the same set in } P \text{ and are adjacent in } G, \text{ or they are in different sets in } P \text{ and are nonadjacent in } G. \]

\[\iff u \text{ and } v \text{ are in the same set in } P \text{ and are nonadjacent in } \overline{G}, \text{ or they are in different sets in } P \text{ and are adjacent in } \overline{G}. \]

\[\iff u \text{ and } v \text{ are adjacent in } G^P_{k(i)}. \]

This proves (ii).

As a consequence of Proposition 1, we have

Corollary 1.1 — For any graph \(G \),

\[i) \quad G^P_k \equiv G \quad \iff \quad \overline{G^P_k} \equiv \overline{G}; \quad \text{and} \]

\[ii) \quad G^P_{k(i)} \equiv G \quad \iff \quad \overline{G^P_{k(i)}} \equiv \overline{G}. \]

In other words, \(G \) is \(k \)-s.c. if, and only if, \(\overline{G} \) is so, and \(G \) is \(k(i) \)-s.c. if, and only if, \(\overline{G} \) is so.

The \(k \)-complement and \(k(i) \) complement of \(G \) are related as follows :-

Proposition 2 — \(i) \overline{G^P_k} \equiv G^P_{k(i)} \) and \(ii) \overline{G^P_{k(i)}} \equiv G^P_k \).

PROOF : \(i) \) Let \(u \) and \(v \) be two vertices in \(G \). Then

\[u \text{ and } v \text{ are adjacent in } \overline{G^P_k}. \]

\[\iff \text{ they are in the same set of the partition } P, \text{ and are nonadjacent in } G, \text{ or they are in different sets in } P, \text{ and adjacent in } G. \]

\[\iff \text{ they are adjacent in } \overline{G^P_{k(i)}}. \]

From Propositions 1 and 2, we have the following:

Corollary 2.1 — For any graph \(G \),

\[i) \quad G^P_k \equiv G_k \equiv G^P_{k(i)} \]

and \[ii) \quad G^P_{k(i)} \equiv G_{k(i)} \equiv G^P_k \]

By Proposition 2, we have

Corollary 2.2 — \(i) \quad G^P_k \equiv G \quad \iff \quad G^P_{k(i)} \equiv \overline{G}. \)

\[ii) \quad G^P_{k(i)} \equiv G \quad \iff \quad G_k \equiv \overline{G}. \]

In other words, \(G \) is \(k \)-s.c. if, and only if, \(G \) is \(k(i) \)-o.s.c., and \(G \) is \(k(i) \)-s.c. if, and only if, it is \(k \)-co-s.c.
3. \(k(i)-\text{Co-Self Complementary Graphs}\)

As usual, let \(P_r\) and \(C_r\) respectively denote a path and a cycle on \(r\) vertices.

Every complete bipartite graph \(K_{m,n}\) is \(2(i)\)-co-s.c. with respect to the partition \(P = \{V_1, V_2\}\), where \(V_1\) consists of two vertices corresponding to the end vertices of an edge and \(V_2\), the other vertices. In particular, every star \(K_{1,n}\), \(n \geq 2\), is \(2(i)\)-co-s.c. A double star is a tree with exactly two vertices of degree greater than one. Every double star is \(2(i)\)-co-s.c., \((V_1\) is composed of the two vertices of degree greater than one), as are the cube \(Q_3\) \((V_1\) is composed of the vertices on two diagonally opposite edges), the paths \(P_3\) (a star), \(P_4\) (a double star), \(P_5\) \((V_1\) is the middle vertices \(P_6(V_1)\) is composed of the two middle vertices and the two end vertices), \(P_7\) \((V_1\) is composed of every other vertex), the cycle \(C_4\) \((V_1\) is composed of two adjacent vertices), \(C_6\) \((V_1\) is composed of two opposite vertices, and \(C_8\) \((V_1\) is composed of every other vertex).

We now state a number of results on \(k(i)\)-co-s.c. graphs without proofs. These are immediate consequences of Corollary 2.2 and the results in [1] as indicated.

Proposition 3 — (Cf. Proposition 1 of [1]). If a \((P, q)\)-graph \(G\) is \(k(i)\)-co-s.c., then

\[i) \quad G \text{ has a vertex of degree at least } \frac{p(k-1)}{2k}, \text{ and} \]

\[ii) \quad \frac{(k-1)(2p-k)}{2k} \leq q \leq \frac{2p(p-k)+k(k-1)}{4}. \]

Proposition 4 — (Cf. Corollary 1.1. of [1]) The following statements are true :

\[i) \quad \text{A } (4(i)\text{-co-s.c. tree has order at most four.} \]

\[ii) \quad \text{There are no } (k(i)\text{-co-s.c. trees for } k \geq 5. \]

\[iii) \quad \text{A forest with at least two components is not } (k(i)\text{-co-s.c. for } k \geq 3. \]

\[iv) \quad \text{A connected } 4(i)\text{-co-s.c. unicyclic graph has order at most six.} \]

\[v) \quad \text{A connected } 5(i)\text{-co-s.c. unicyclic graph has order five.} \]

\[vi) \quad \text{There do not exist connected } (k(i)\text{-co-s.c. unicyclic graphs for } k \geq 6.} \]

3.1. **Characterizations of \(k(i)\)-co-s.c. Trees**

As mentioned above, using Corollary 2.2, characterizations of \(k(i)\)-co-s.c. trees can be easily deduced from the characterizations of \(k\)-s.c. trees obtained in [1]. We simply state the results without proofs.

Proposition 5 — (Cf. Theorem 3 of [1]) A tree of order \(P\) is \(2(i)\)-co-s.c. if, and only if, one of the following holds:-

\[i) \quad \text{\(P = 7\) and the tree is either } P_7 \text{ or it consists of a path } v_1v_2v_3v_4v_5v_6 \text{ together with a pendent edge } v_4v_7. \]

\[ii) \quad \text{The vertex set of } T \text{ can be partitioned into two sets } V_1 \text{ and } V_2 \text{ such that one of } (a), \]

\((b)\text{ and } (c) \text{ is true.} \]

\[(a) \quad p \geq 5, \, |V_1| = 1 \text{ and the subgraph } \langle V_2 \rangle \text{ has exactly } (P-1)/2 \text{ components.} \]
(b) \(V_1 \) consists of exactly two nonadjacent vertices and exactly one component of \(\langle V_2 \rangle \) is
\(K_2 \), and all others, of which there is at least one, are \(K_1 \)'s.

(c) \(V_2 = \{u, v\} \) where \(uv \) is an edge and \(V_1 \) is independent.

Corollary 5.1 — (Cf. Corollary 3.1 of [1]) Any \(2(i)-co-s.c. \) tree has diameter at most six.

Let \(T_1 \) and \(T_2 \) be two trees obtained from a path \(P_5 : v_1v_2v_3v_4v_5 \) as follows:

\[T_1 \text{ is } P_5 \text{ plus two pendent edges } v_3v_6 \text{ and } v_3v_7; \text{ and} \]

\[T_2 \text{ is } P_5 \text{ plus two pendent edges } v_2v_6 \text{ and } v_4v_7. \]

Corollary 5.2 — (Cf. Corollary 3.2 of [1]) All trees on \(P \) vertices, \(3 \leq p \leq 7 \), except \(T_1 \) and \(T_2 \) are \(2(i)-co-s.c. \).

In a similar way, one can deduce characterizations of \(k(i)-co-s.c. \) forests and unicyclic graphs from the known results. The reader is referred to [1] for details.

4. \(k(i)\)-Self Complementary Trees

We first obtain some necessary conditions for a tree to be \(k(i)-s.c. \).

Proposition 6 — Suppose \(P = \{V_1, V_2, \ldots, V_k\} \) is a partition of the vertex set \(V(T) \) of a tree \(T \), and \(G_r = \langle V_r \rangle \) be the subgraph induced by \(V_r \), \(1 \leq r \leq k \). If \(T_{k(i)}^P \equiv T \), then -

1. \(\beta_0(G_r) \leq 2 \) for \(1 \leq r \leq k \), where \(\beta_0(G_r) \) is the independence number of \(G_r \);
2. each set \(V_r \) in \(P \) contains at most four vertices; and
3. each \(G_r \) is exactly one of the following graphs:

 (a) \(rK_1, 1 \leq r \leq 2 \), (b) \(K_2 \), (c) \(K_1 \cup K_2 \), (d) \(K_{1,2} \), (e) \(P_4 \).

Proof:

1. If \(\beta_0(G_r) \geq 3 \) for some \(G_r \), then \(T_{k(i)}^P \) contains a cycle, which is not true.
2. This follows from (i), since otherwise \(\beta_0(G_r) \geq 3 \) for some \(G_r \).
3. By (i) and (ii), each \(G_r \) has at most four vertices with \(\beta_0(G_r) \leq 2 \). If a \(G_r \) has at most three vertices, clearly, \(G_r \) must be one of the graphs mentioned in (a)-(d). If a \(G_r \) has four vertices, then it must have exactly three edges, since otherwise \(\overline{G_r} \) has a cycle.

 Also \(G_r \neq K_{1,3} \) by (i). This implies \(G_r \equiv P_4 \).

Corollary 6.1 — If a tree \(T \) of order \(P \) is \(k(i)-s.c. \), then \(k \leq p \leq 4k \).

The following result gives another necessary condition for a tree to be \(k(i)-s.c. \).

Proposition 7 — Let \(T \) be a \(k(i)-s.c. \) tree for some \(k \geq 2 \), with respect to a partition \(P = \{V_1, V_2, \ldots, V_k\} \) of the vertex set \(V \).

Let \(v \) be a vertex of maximum degree in \(T \), and \(f \) be an isomorphism of \(T \) onto \(T_{k(i)}^P \). Then \(\deg v \leq k \) if \(f(v) = v \); and
\[\deg v \leq \frac{k + 4}{2} \text{ if } f(v) \neq v. \]

Proof: Let \(v \in V_1 \). Then by Proposition 6, \(v \) has at most two neighbours in \(V_1 \). We now consider various cases.

Case 1: \(f(v) = v \).

If \(v \) has two neighbours in \(V_1 \), then by Proposition 6, the subgraph \(\langle V_i \rangle \) is either \(P_4 \) or \(K_{1, 2} \), and the degree of \(v \) in \(T_{k(i)}^P \) is less than that in \(T \), a contradiction. Hence, \(v \) has at most one neighbour in \(V_1 \). Also, \(v \) can have at most one neighbour in each of the other sets in \(P \), for otherwise there will be a cycle in \(T_{k(i)}^P \). Thus \(\deg v \leq k \).

Case 2: \(f(v) = u \neq v \).

Subcase 2.1: \(u \in V_1 \). In this case there exists at most one set other than \(V_1 \) containing neighbours of both \(u \) and \(v \). Each other set has at most one neighbour of either \(v \) or \(u \). This implies that \(\deg v \leq 2 + 1 + \frac{k - 2}{2} = \frac{k + 4}{2} \).

Subcase 2.2: \(u \in V_2 \).

Subcase 2.2.1 (a): \(v \) is adjacent to \(u \) in \(T \).

In this situation there is no set containing neighbours of both \(u \) and \(v \).

Hence, \(\deg v \leq 2 + 1 + \frac{k - 2}{2} = \frac{k + 2}{2} \).

Subcase 2.2.1 (b): \(v \) is adjacent to a vertex different from \(u \) in \(V_2 \). Now, if \(u \) has a neighbour in \(V_1 \), then as in Subcase 2.2.1(a), \(\deg v \leq \frac{k + 4}{2} \). Otherwise, there exists at most one set \(V_j, j \neq 1, 2 \) in \(P \) having neighbours of both \(u \) and \(v \). Also, if \(v \) has two neighbours in \(V_1 \), then \(u \) is adjacent to a vertex in a set \(V_r \) which has no neighbours of \(v \), since \(\deg u \) in \(T_{k(i)}^P \) must be equal to \(\deg v \) in \(T \). Hence \(\deg v \leq 2 + 1 + \frac{k - 4}{2} = \frac{k + 4}{2} \).

Subcase 2.2.2: \(v \) has no neighbours in \(V_2 \).

In this case there may exist at most two sets different from \(V_1 \) and \(V_2 \) having neighbours of both \(u \) and \(v \). Hence,

\[\deg v \leq 2 + 1 + 1 + \frac{k - 4}{2} = \frac{k + 4}{2}. \]

Thus in all cases, \(\deg v \leq \frac{k + 4}{2} \).

Corollary 7.1: If a tree \(T \) is \(k \)-co-s.c. for some \(k \geq 3 \), then \(\Delta(T) \leq k \).

We now characterize \(2(i) \)-s.c. trees. In fact, one can find them.

Proposition 8: There are exactly five trees which are \(2(i) \)-s.c.
PROOF: Let T be a $2(i)$-s.c. tree of order P with respect to the partition $P = \{V_1, V_2\}$ of the vertex set V of T. Let G_r be the subgraph of T induced by V_r, $r = 1, 2$. By Corollary 6.1, $p \leq 8$. We consider various cases.

Case 1 — $P = 8$.

In this case it follows by Proposition 6 that every partition $P = \{V_1, V_2\}$ of V is such that $|V_1| = |V_2| = 4$. Again, by Proposition 6, $G_1 = G_2 = P_4$. The only tree that is $2(i)$-s.c. with respect to such a partition is the one in which a vertex of degree 2 in G_1 is adjacent to a vertex of degree 1 in G_2 as shown in Fig. 2.

![Fig. 2](image)

Thus, there is exactly one tree on eight vertices which is $2(i)$-s.c.

Case 2 — $P = 7$.

In this case, it follows by Proposition 6 that $|V_1| = 4$ and $|V_2| = 3$, $G_1 = P_4$ and G_2 is either $K_1 \cup K_2$ or $K_{1,2}$. Both choices of G_2 yield a $T_{2(i)}^p$ in which the number of edges is different from that in T. This proves that no tree on seven vertices is $2(i)$-s.c.

Case 3 — $P = 6$.

As above we observe that either $|V_1| = 4$ and $|V_2| = 2$, or $|V_1| = |V_2| = 3$. In the first case, $G_1 = P_4$ and G_2 is either K_2 or $2K_1$. Both the choices of G_2 yield a $T_{2(i)}^p$ with different number of edges than T. If $|V_1| = |V_2| = 3$, then $G_1 = K_{1,2}$ and $G_2 = K_1 \cup K_2$ or vice-versa in order that both T and $T_{2(i)}^p$ have the same number of edges. There are exactly two trees on six vertices which are $2(i)$-s.c. with respect to such a partition. (See Fig. 3)

![Fig. 3](image)
Case 4 — $P = 5$.

In this case either $|V_1| = 4$ and $|V_2| = 1$ or $|V_1| = 3$ and $|V_2| = 2$. In the former case $G_1 = P_4$, and $G_2 = K_1$, and no tree is $2(i)$-s.c. with respect to such a partition. In the latter case, $G_1 = K_{1,2}$ or $K_1 \cup K_2$ and $G_2 = 2K_1$ or K_2. The possible choices such that both T and $T_{2(i)}^P$ have the same number of edges are $G_1 = K_{1,2}$, $G_2 = 2K_1$, and $G_1 = K_1 \cup K_2$ and $G_2 = K_2$. One can easily verify that no tree obtained by joining a vertex of G_1 to a vertex of G_2 is $2(i)$-s.c. Thus, no tree on five vertices is $2(i)$-s.c.

Case 5 — $2 \leq p \leq 4$.

Out of the four trees in this case, only P_4 and K_2 are $2(i)$-s.c. This proves the Proposition.

From Corollary 2.2, we have

Corollary 8.1 — There are exactly five trees which are 2-co-s.c., and these are the trees which are $2(i)$-s.c.

We now characterize $3(i)$-s.c. trees.

Proposition 9 — There are exactly seven $3(i)$-s.c. trees.

Proof: Let T be a $3(i)$-s.c. tree of order P with respect to the partition $\{V_1, V_2, V_3\}$ of $V(T)$. Then by Proposition 6 $3 \leq p \leq 12$. Suppose $G = \langle V_r \rangle$, $1 \leq r \leq 3$. We consider various cases. In the proof we only consider partitions such that

(i) Both T and $T_{k(i)}^P$ have the same number of edges.

Case 1 — $P = 12$. By Proposition 6, $G_r = P_4$, $r = 1, 2, 3$, and one can verify that no tree with this partition is $3(i)$-s.c.

Case 2 — $P = 11$. Again by Proposition 6, $G_1 = G_2 = P_4$, and G_3 is either $K_{1,2}$ or $K_2 \cup K_1$. There is no $3(i)$-s.c. tree with this partition.

Case 3 — $P = 10$. As above we find that the only possible partitions are as follows:

$G_1 = P_4$, $G_2 = K_{1,2}$, $G_3 = K_2 \cup K_1$, or

$G_1 = P_4$, $G_2 = P_4$, $G_3 = K_2$ or \overline{K}_2

With these partitions, we find that the tree T is not $3(i)$-s.c.

Case 4 — $P = 9$. In this case the only possible partitions are

$G_1 = G_2 = P_4$, $G_3 = K_1$,

$G_1 = P_4$, $G_2 = K_{1,2}$, $G_3 = \overline{K}_2$
\[G_1 = G_2 = G_3 = K_{1,2} \quad \text{or} \quad \overline{K}_{1,2} \]

The first one yields a 3\((i)\)-s.c. tree as follows:

![Diagram of 3\((i)\)-s.c. tree](image)

Fig. 4

The other partitions do not give 3\((i)\)-s.c. trees.

Case 5 — \(P = 8\). Among all possible partitions, we find that the only partition where
\(G_1 = P_4, G_2 = K_2\) and \(G_3 = \overline{K}_2\) yield a 3\((i)\)-s.c. tree as follows:

![Diagram of 3\((i)\)-s.c. tree](image)

Fig. 5

Case 6 — \(P = 7\). In this case, the only partition which yields a 3\((i)\)-s.c. tree is \(G_1 = P_3, G_2 = K_2 \cup K_1, G_3 = K_1\).

![Diagram of 3\((i)\)-s.c. tree](image)

Fig. 6

There are exactly three trees which are 3\((i)\)-s.c. with respect to such a partition, and they are as follows:

![Additional diagrams of 3\((i)\)-s.c. trees](image)

Fig. 6

Case 7 — \(P = 6\). In this case, the only possible partitions are
\[G_1 = P_4, \ G_2 = G_3 = K_1 \]
\[G_1 = K_{1,2}, \ G_2 = \overline{K_2}, \ G_3 = K_1. \]

There are no 3(i)-s.c. trees with such partitions.

Case 8 — \(P = 5 \). In this case there is exactly one tree namely, \(P_5 \) which is 3(i)-s.c. with respect to the partition \(G_1 = K_2, \ G_2 = K_1, \ G_3 = \overline{K_2}. \)

Case 9 — \(3 \leq p \leq 4 \). There is exactly one tree, namely, \(P_3 \) which is 3(i)-s.c. trivially.

By Corollary 2.2, we have

Corollary 9.1 — There are exactly seven trees which are 3-co-s.c.

In general, characterization of \(k(i) \)-s.c. trees for \(k \geq 4 \) appears to be difficult. We now state some open problems.

Problem 1 : Characterize \(k(i) \)-s.c. trees for \(k \geq 4 \).

Problem 2 : Characterize trees which have nontrivial \(k(i) \)-complement which are also trees.

Problem 3 : Characterize graphs which are \(k(i) \)-complements of \(i \) trees, and \(ii \) cycles.

5. \(k(i) \)-SELF COMPLEMENTARY UNICYCLIC GRAPHS

We consider only connected unicyclic graphs here.

First we give some necessary conditions for a unicyclic graph to be \(k(i) \)-s.c., and then determine all 2(i)-s.c. unicyclic graphs.

Proposition 10 — Let \(G \) be a unicyclic graph which is \(k(i) \)-s.c. with respect to the partition \(P = \{V_1, V_2, \ldots, V_k\} \) of \(V(G) \). Then

i) \(|V_r| \leq 5 \) for \(1 \leq r \leq k \), and

ii) for at most one \(V_r \), \(|V_r| = 5 \), and in this case the subgraph \(\langle V_r \rangle \) is a self complementary graph on five vertices.

Proof: If a set has six vertices, or two sets in \(P \) have at least five vertices each, then \(G_{k(i)}^P \) has at least two cycles, a contradiction. Now, suppose \(|V_1| = 5 \). Then the subgraph \(\langle V_1 \rangle \) should have exactly five edges, for otherwise \(G_{k(i)}^P \) will have more than one cycle. Also, the subgraph \(\langle V_1 \rangle \) must be a self complementary graph on five vertices, for otherwise, the lengths of the cycles in \(G \) and \(G_{k(i)}^P \) will not be the same.

Corollary 10.1 — If \(G \) is a \(k(i) \)-s.c. unicyclic graph of order \(P \) then, \(k \leq p \leq 4k + 1 \).

Proposition 11 — Let \(G \) be a unicyclic graph \(P = \{V_1, V_2, \ldots, V_k\} \ k \geq 3 \) be a partition of the vertex set \(V(G) \) of \(G \), and \(G \equiv G_{k(i)}^P \). Then \(\Delta(G) \leq k + 2 \), where \(\Delta(G) \) is the maximum degree of
G. Further, if for any vertex \(v \) of maximum degree in \(G \) and any isomorphism \(f \) of \(G \) onto \(G^P_{k(i)}, f(v) \neq v \), then \(\Delta(G) \leq \frac{k+6}{2} \).

Proof: First we make two observations:

1. A vertex in a self complementary graph on five vertices has degree at most three. This together with Proposition 10 implies that a vertex in any \(V_j, 1 \leq j \leq k \), has at most three neighbours in \(V_j \).

2. A vertex \(v \) in any \(V_j, 1 \leq j \leq k \), can be adjacent to at most two vertices in any \(V_s, s \neq j \). For otherwise, \(G^P_{k(i)} \) will have more than two cycles.

Let \(v \) be a vertex of maximum degree in \(G \), and \(v \in V_1 \). We consider various cases.

Case 1 — \(f(v) = v \).

Since \(v \) has the same degree both in \(G \) and \(G^P_{k(i)} \), we have

\[(A) : \text{the number of neighbours of } v \text{ in } V_1 \text{ both in } G \text{ and } G^P_{k(i)} \text{ must be equal.} \]

Since \(|V_1| \leq 5 \), clearly \((A) \) implies that in \(G \), \(v \) cannot have three neighbours in \(V_1 \). We now consider various subcases.

Subcase 1.1 — In \(G \), \(v \) has no neighbours in \(V_1 \).

It follows from \((A) \) that \(|V_1| = 1 \), and there can be at most two other sets in \(P \), say \(V_2, V_3 \) in each of which \(v \) may have two neighbours. Also, \(v \) may have at most one neighbour in each of the other sets. Hence, \(\deg v \leq 0 + 2 + 2 + k - 3 = k + 1 \).

Subcase 1.2 — \(v \) has exactly one neighbour in \(V_1 \).

As in Subcase 1.1, \(v \) may have two neighbours in each of the sets \(V_2, V_3 \), and at most one neighbour in each of the remaining sets. So \(\deg v \leq 1 + 2 + 2 + k - 3 = k + 2 \).

Subcase 1.3 — \(v \) has exactly two neighbours in \(V_1 \).

In this case, Proposition 10 and the condition \((A) \) imply that the subgraph \(\langle V_j \rangle \) of \(G \) should be a self complementary graph on five vertices. So, \(v \) can have at most one neighbour in each of the other sets, and \(\deg v \leq 2 + k - 1 = k + 1 \).

Case 2 — \(f(v) = u \neq v \).

Subcase 2.1 \((B) \) — \(v \) has three neighbours in \(V_1 \).

There may exist at most one set \(V_j, 2 \leq j \leq k \), say \(V_2 \) in which \(v \) has two neighbours. (For otherwise \(G^P_{k(i)} \) will have more than one cycle).

Subcase 2.1.1 — \(v \) has two neighbours in \(V_2 \).

In this case it follows by \((B) \) that

1. \(v \) belongs to a triangle in \(G \), and since \(f(v) = u \), \(u \) should also belong to a triangle in \(G^P_{k(i)} \), and

2. \(u \) belongs to either \(V_1 \) or \(V_2 \). (See Fig. 7)
Fig. 7

\(u \) belongs to either \(V_1 \) or \(V_2 \). (See Fig. 7)

Subcase 2.1.1 (a) \(u \in V_1 \)

If \(u \) has a neighbour in \(V_2 \), then both \(u \) and \(v \) cannot have neighbours in any \(V_j, 3 \leq j \leq k \). Also, \(u \) has exactly one neighbour in two sets in which \(v \) has no neighbours, since \(\deg v \) in \(G \) is equal to \(\deg u \) in \(G_{k(i)}^P \). The remaining sets in \(P \) contain at most one neighbour of either \(u \) or \(v \).

Hence, \(\deg v \leq 3 + 2 + \frac{k - 4}{2} = \frac{k + 6}{2} \).

On the other hand, if \(u \) has no neighbours in \(V_2 \), then there exists at most one set \(V_j, 3 \leq j \leq k \), containing neighbours of both \(u \) and \(v \). As above, we find that \(u \) has exactly one neighbour in three remaining sets in \(P \) in which \(v \) has no neighbour. The other sets in \(P \) contain a neighbour of at most one of \(u \) or \(v \). Hence, \(\deg v \leq 3 + 2 + 1 + \frac{k - 6}{2} = \frac{k + 6}{2} \).

Subcase 2.1.1. (b) \(u \in V_2 \)

In this case both \(u \) and \(v \) cannot have neighbours in any \(V_j, 3 \leq j \leq k \). (For otherwise, \(G_{k(i)}^P \) will have more than one cycle). Since \(\deg v \) in \(G \) is equal to \(\deg u \) in \(G_{k(i)}^P \), it follows by (B) that if \(u \) has \(r \) neighbours (one each) in some \(r \) sets in the collection \(P' = \{ V_3, V_4, \ldots, V_k \} \), then \(v \) has at most \((r - 2)\) neighbours (one each) in some other \((r - 2)\) sets in \(P' \). This implies that in \(G \), \(\deg v \leq 3 + 2 + \frac{k - 4}{2} = \frac{k + 6}{2} \).

Subcase 2.1.2 — \(v \) has at most one neighbour in each set \(V_j, 2 \leq j \leq k \). In this case, both \(v \) and \(u \) can have neighbours in at most one set \(V_j, 2 \leq j \leq k \). Hence, as in Subcase 2.1.1., we have
\[\text{deg } v \leq 3 + 1 + \frac{k - 2}{2} = \frac{k + 6}{2} \]

\textbf{Subcase 2.2 — } \text{\textit{V \textnormal{} has at most two neighbours in } } V_1. \\

In this case, there exist at most two other sets, say \(V_2, V_3 \) in each of which \(v \) may have two neighbours. In this case also, by similar arguments as above, one can show that \(\text{deg } v \leq \frac{k + 6}{2}. \)

We now find all 2\((i)\)-s.c. unicyclic graphs

\textbf{Proposition 12 — } There are exactly eighteen 2\((i)\)-s.c. unicyclic graphs.

\textbf{Proof:} Let \(G \) be a 2\((i)\)-s.c. unicyclic graph of order \(P \) with respect to the partition \(P = \{ V_1, V_2 \} \) of \(V(G) \). By Corollary 10.1, \(p \leq 9 \). We consider various cases, and in each case, we consider partitions satisfying the condition

\[(D): \text{the number of edges in } G \text{ and } G_{k(i)}^P \text{ are equal.} \]

\textbf{Case 1 — } \(P = 9. \)

The only possible partition of \(V(G) \) is such that \(|V_1| = 5 \) and \(|V_2| = 4 \). There is no 2\((i)\)-s.c. unicyclic graph with respect to such a partition.

\textbf{Case 2 — } \(P = 8. \)

The only possible partitions are such that \(|V_1| = |V_2| = 4 \).

\textbf{Subcase 2.1 — } Each subgraph \(\langle V_1 \rangle \) and \(\langle V_2 \rangle \) has exactly three edges. There are exactly four unicyclic graphs \(G_1 - G_4 \) as in Fig. 8 which are 2\((i)\)-s.c. with respect to such partitions.

\textbf{Subcase 2.2 — } The subgraph \(\langle V_1 \rangle \) has four edges and the subgraph \(\langle V_2 \rangle \) has two edges.

In this case, there are exactly five 2\((i)\)-s.c. graphs \(G_5 - G_9 \) as shown in Fig. 8.

\textbf{Case 3 — } \(P = 7. \) There are no partitions satisfying the condition \((D). \)

\textbf{Case 4 — } \(P = 6. \)

There exist two types of partitions satisfying the condition \((D), \) namely \(|V_1| = 5, |V_2| = 1, \) and \(|V_1| = |V_2| = 3. \)

\textbf{Subcase 4.1 — } \(|V_1| = 5, |V_2| = 1. \)

There are exactly two 2\((i)\)-s.c. unicyclic graphs \(G_{10} \) and \(G_{11} \) with this partition as shown in Fig. 8.

\textbf{Subcase 4.2 — } \(|V_1| = |V_2| = 3. \)

In this case there are exactly five graphs \(G_{12} - G_{16} \) as in Fig. 8.

\textbf{Case 5 — } \(P = 5. \) There are two possibilities for the sets as follows:

\(|V_1| = 4, |V_2| = 1 \) and \(|V_1| = 3, |V_2| = 2. \)
Out of these only the latter gives a 2(i)-s.c. graph G_{17} as in Fig. 8.

Case 6 — $p \leq 4$. In this case G_{18} is the only graph which is 2(i)-s.c.

Corollary 12.1 — There are exactly eighteen 2-co-s.c. unicyclic graphs namely, those in Fig. 8.

REFERENCE