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BIRTH OF CALCULUS
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Continuing a critical reading of the text Yuktibhās. ā of
Jyes.t.hadeva, two closely related questions are addressed: i) do
the infinitesimal methods used in deriving the power series for
trigonometric functions as well as the surface area and volume of
the sphere mark the invention of the discipline of calculus? and ii)
what are the sources of the ideas and techniques that culminated
in these results? A careful analysis of the text and comparison
with early European calculus lead to the conclusion that the crit-
ical concept, that of local linearisation, is common to both and
that the answer to the first question is an unambiguous yes. The
roots of this breakthrough, in particular the recognition of the
need for ‘infinitesimalisation’ whenever the rule of three fails to
hold, go back to the material in Āryabhat.ı̄ya dealing with the sine
table. Related issues examined include the misunderstanding of
the mathematics of the sine table during the nine hundred years
separating Mādhava from Āryabhat.a and the contrasting attitude
to abstraction and generalisation in the work described in Yuk-
tibhās. ā and in the later European approach to similar problems.
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Calculus or not?

For students of the work of the astronomer-mathematicians who
lived in Kerala on the southwest coast of India during ca. 1400-1600
CE (the Nila school1),2 the appearance of two recent publications is a
significant event. One, Kim Plofker’s panoramic survey of Indian mathe-
matics over its known history and geography [1]3, has a detailed overview
of most of their achievements and places them in their proper historical
context. The other is K. V. Sarma’s English translation of Yuktibhās. ā
[4], a work which is, as I shall argue below, indispensable for an appreci-
ation of the originality and power of the Nila school and hence is the key
text for the purpose of the present article. That purpose is to try and
establish, from a detailed look at the material in Yuktibhās. ā, that the
most original and powerful of their achievements was the invention of a
novel mathematical discipline that we now call calculus, though in the
limited context of certain ‘elementary’ questions involving trigonometric
functions. And what makes Yuktibhās. ā such an indispensable sourcebook
is that its expansive text provides proofs of every relevant result cited
(with two exceptions which are not central to our concerns here) as well
as prefatory and explanatory passages on the context and motivation of
these results. Such asides, largely absent in other texts of the Nila school
as indeed they are from almost all of Indian mathematical writing, will
turn out to be invaluable in making the case that the invention of cal-
culus came as the innovative response from Mādhava, the founder of the
school, to a need felt from as long back as Āryabhat.a (499 CE).

As is well-known to historians of mathematics now, the most spec-
tacular of the results of the Nila school are power series expansions of
certain trigonometric functions, namely, the arctangent series:
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and its specialisation to θ = π/4 (the basic π series):
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the sine series:
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and the cosine series:

cos θ = 1− θ2
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Precisely these are among the first landmarks of late 17th century Euro-
pean calculus, as attested by their association with the names of Newton,
Leibniz and Gregory. More than three centuries later, there still is no
way of getting at these series, especially the π series, that does not rely
indispensably on the central idea of infinitesimal calculus, that of the
processes of local linearisation (differentiation) and its inverse (integra-
tion) as encompassed in the fundamental theorem of calculus. It would
appear that this fact has not had much of an effect on the continuing
debate in some circles on whether the Nila work was really calculus or
only some ‘form of calculus’, or even a sort of ‘precalculus’.4 As though
to compensate, others have suggested that a general idea of calculus was
intuitively apprehended in India well before Mādhava came on the scene.
By the end of this article, I hope to be able to convince the patient reader
that these incompatible positions are both equally untenable. As much
as the publication of the two books mentioned in the beginning, this risk
of the possibility of a double misunderstanding of the achievements of
the Nila school provides an additional motivation for a critical fresh look
at the whole question.5

Less widely noted than the trigonometric power series are other
sections in Yuktibhās. ā that describe a way of deriving the formulae for
the surface area and volume of a sphere. These formulae have a long his-
tory, the first correct derivation going back, of course, to Archimedes and
his beautiful method of exhaustion. In India, while Āryabhat.a got them
famously wrong, Bhāskara II (mid-12th century CE) employed a logically
questionable semi-numerical method which is not truly infinitesimal but
arrived at the correct formulae (for a reason which it will be instructive
to look at later). Their treatment in Yuktibhās. ā, in contrast, displays
a clear understanding of the new infinitesimal method of Mādhava. In-
deed, once dressed up in symbols and today’s style of presentation, the
Yuktibhās. ā proofs are essentially the same as can be found in a textbook
of elementary calculus, with the added bonus that it includes the actual
working out of the (definite) integral of sine and cosine (by a method
which will appear quite original in the modern classroom).
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To assert that the writings of the Nila school record the birth of
the discipline of calculus is to invite a whole host of questions. The first of
them, inevitably a very general one, is: what exactly are the hallmarks of
this discipline? Why do we consider Fermat’s quadrature of the ‘general
parabola’ (ym = axn), for example, to be ‘calculus’, a direct antecedent
of the calculus of Newton and Leibniz while Archimedes’s method of
exhaustion is generally regarded not to be? In India, correspondingly:
why are Bhāskara II’s formulae for the sphere not to be thought of as
marking the advent of calculus? Or: what is the status of Mādhava’s
interpolation formulae for the sine and the cosine as a possible illustration
of his own foundational principles of true calculus? The interpolation
formula has already been looked at in this light in [7], with the conclusion
that, even if iterated indefinitely, it is most certainly not an illustration
of the method of calculus and is in fact wrong. The sources of Bhāskara’s
formulae are historically more interesting and is one of the questions that
will be examined with some care below. The two examples are valuable
as they provide excellent case studies of criteria that will separate what
should be considered calculus and what not and, in that role, have figured
in recent discussions – the interpolation formula is treated at length in
[8] (useful also to trace the literature questioning the calculus credentials
of the Nila work) while Mumford’s recent review [9] of [1] looks at the
Nila work as a whole as well as Bhāskara’s formulae in the perspective
of modern calculus.

The issue of what exactly one means by calculus, in the context
of its European history, is an old and frequently addressed one to which
little worthwhile can be added anew. Neverthelesss, given the somewhat
different metaphysics of calculus (to use a phrase favoured by d’Alembert
and Lazare Carnot among others) in its Indian avatar it is useful, and
perhaps even obligatory, to revisit the question and frame the present
discussion within its ambit. I will argue that the notion that captures
the essence of calculus in both the Indian and the European approaches
is most naturally and intuitively expressed geometrically: the local lin-
earisation of a curve and its relationship to determining its length (recti-
fication), in other words the fundamental theorem of calculus in its most
elementary geometrical version. This is not a very original thing to say
but it will help free the discussion from irrelevancies.
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Especially noteworthy within this framework is that the notion of
an infinitesimal, which caused such controversy in Europe already while
Newton and Leibniz were alive, has no primacy in the Indian approach.
What was central was its inverse notion, that of an infinite (more accu-
rately, unboundedly large) quantity as exemplified by the infinitude of
natural numbers: a (finite, geometric) quantity was ‘infinitesimalised’ by
dividing it by a large positive integer which was then allowed to grow
without bound. There are other important differences in the way the
metaphysics of calculus played out in India and in Europe, discussed
in section 8 below, but it will become clear nevertheless that they do
not detract from the underlying conceptual and methodological unity of
the two traditions: the truly innovative element in the Nila corpus is
the invention of calculus rather than trigonometric novelties or even the
recognition of infinite series as meaningful mathematical objects.

That in turn raises fresh questions. Why were these brilliant men
content just with the examples listed above, without the urge to ex-
plore, as in Europe, the generality of the ideas and methods they had
in hand? And, from a historiographic angle, why has there been a hes-
itancy among some historians of mathematics to acknowledge what is
most deeply original in their work? There can be no final objective
answers to such questions. All that is possible is to offer plausible sug-
gestions, with due respect paid to the original texts, especially but not
exclusively Yuktibhās. ā.

The present article is the second in a short series on some general
themes in the evolution of mathematical thought in India, as seen from
the vantage point of its last great phase and the most insightful text of
that phase. As in the earlier paper [7], part of the aim is to trace the roots
of the ideas that came to maturity in this final phase. As far as calculus is
concerned, its geometric/trigonometric roots go back directly to certain
specific verses from the Āryabhat.ı̄ya and thence, more broadly, to the
original Vedic (Śulbasūtra, ca. 8th century BCE) geometry of circles and
right triangles. The other, ‘infinitesimal’, component comes, as noted
earlier, from long familiarity with the infinitude of numbers as expressed
in the decimal place-value system of enumeration, already mastered in
the early Vedic period as is evident from the number names of the R. gveda
(ca. 12th-11th centuries BCE [7,10,11]). In a more abstract direction,
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decimal numbers also served as a model for polynomials and power series
([6,11]) which figure so prominently in the Nila material on calculus as
they did, later, for Newton ([7]).6

Also as in [7], the general method of presentation adopted here is
to start with the relevant passages from Yuktibhās. ā and then to trace the
roots of the key ideas back as far as we can go. The passages cited or
quoted are identified by the section and subsection numbers in Sarma’s
book ([4]) though the actual quotations when given are in my own trans-
lation. In order to minimise the potential for misreading or overreading,
I have tried to make the translations as literal as is consistent with the
demands of English. When geometrical constructions are invoked, I shall
fall back on the clear diagrams in the supplementary notes ([13]) to [4].7

For this reason among others (and as the title is meant to convey), the
reader will find it useful to have a copy of [4] to hand.

Given that recursive methods (most notably the method of suc-
cessive refining called sam. skāram in Yuktibhās. ā), which were the focus
of the earlier paper [7], form such an important part of the technical
apparatus of the Nila calculus, it has turned out to be difficult to avoid a
certain degree of overlap between the present paper and the earlier one.
The introductory section of [7] serves, in particular, as an overview of
calculus as well as of recursion.

Finally, in the interests of historical completeness, I have also
thought it worthwhile to preface the main body of the article with a
brief but critical update of whatever is reasonably securely known about
the lives of the main protagonists.

Mathematicians in their villages

In the context of the little we know of how mathematics was trans-
mitted over the generations and from region to region, the Nila school
is quite exceptional in the continuity and longevity of its productive life.
Every link in the line, teacher-to-pupil and occasionally familial, from
Mādhava (born around the middle of the 14th century) to one of its later
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recognisably significant members (Acyuta Pis.ārat.i, died around 1620) is
traceable with a fair degree of reliability ([15,16,1])8. Equally striking is
the mutual proximity of the villages associated with most of the major
figures, almost all of them on the northern bank of the Nila, close to its
confluence with the ocean.

The Nila (also called Pērār in the past, nowadays more commonly
known as the river Bhārata) is only just above 200 km long though it is
the second longest river in the narrow strip of land that is Kerala. In its
lower basin it is (used to be) a splendid river, very wide with extensive
sand banks and reed beds. As far back as records and communal memory
go, it has been the theatre in which the cultural, intellectual and, to
an extent, the political history of Kerala played out, attaining great
prominence during the reign of the Zamorin (Sāmūtiri) dynasty ruling
from Kozhikode (Calicut). The Zamorins were not only the political
overlords of the region during the period of our interest, but also drew
religious and secular legitimacy from its many famous temples and from
the rites of kingship celebrated on the banks of the river. They were also
great patrons of scholarship, maintaing a royal academy in the capital
and generally continuing a much earlier tradition of supporting centres
of learning. It is tempting to suppose that such a centre existed in the
Nila region, acting as a focus for the teaching and doing of mathematical
and observational astronomy, but there is no recorded evidence for such
a thing.9

The main ‘mathematical villages’ are on the right (north) bank
of the Nila, extending from Tirunavaya (Tirunāvāya), situated right on
the river, to Trikkandiyur (Tr.kkan. t.iyūr), some 10 km to the north, with
Triprangode (Tr.pr.aṅṅōd) and Alathiyur (Ālattiyūr)10 to the west of this
north-south axis. None of them is much more than about 5 km from
the seashore, scene of much action during the 16th and 17th centuries
as the Zamorins fought off the Portuguese at sea and on land. Two
other villages, at some distance from this cluster, also deserve mention:
Shukapuram (Śukapuram) to the south of the river and Trikkudaveli
(Tr.kkut.avēli) some 50 km upstream to the east, the natal villages of Cit-
rabhānu and Śaṅkara (Vāriyar) respectively. It is to be noted that every
one of these villages has a major temple. Temples served as educational,
social and cultural centres in the past; in the social and cultural spheres
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they still do.

The following sketch of the lives of the main protagonists and their
Nila affiliations is largely based on the picture drawn by K. K. Raja ([17])
and K. V. Sarma ([15]) from their unmatched knowledge of manuscripts,
supplemented by the results of local enquiries. The two sources are not
always congruent; some, a very few in fact, of the conclusions of Raja
and Sarma are based on material which local knowledge and beliefs allow
to be read slightly differently.

Of all the personalities of the Nila school, it is about Mādhava
(Madhavan Emprantiri ‘of Sangamagrama’), the founder of the school
and inventor of calculus, that we know the least in regard to personal
details. In fact, we know nothing apart from what we can tease out
of the village name Sangamagrama (‘the village at the confluence’) and
the subcaste epithet ‘Emprantiri’. His dates (ca. 1350-1420?) are an
educated guess, not likely to be far wrong ([17,1]). It is widely believed
([15] and many other references including [1]) that Sangamagrama is near
Irinjalakkuda, approximately 50 km to the south of the Nila. The reason
for the belief is, at best, tenuous. There are other places which have an
equal or better claim to be Sangamagrama: i) a village named Kudalur
(Kūt.alūr) whose literal translation gives the Sanskrit ‘Sangamagrama’,
at the confluence of the river Kunthi with the Nila, about 15 km up
the river from Tirunavaya and ii) Tirunavaya itself which used to be
and sometimes still is referred to as Trimurtisangamam on account of
the presence, on either bank of the river, of temples (predating the Nila
period) dedicated to all three of the main Hindu deities. If only on the
strength of proximity, it would be nice to be able to find real evidence
for one or the other of these possible identifications.11

As for the name Emprantiri, in the early centuries of the second
millennium, it was descriptive of brahmins who or whose immediate an-
cestors had come to Malabar (an old Arabic name for the Kerala coast,
but nowadays reserved for its northern half) from farther north along the
coast (the Tulu country) – most of the brahmins of Kerala (Namputiris)
had migrated there in several waves, starting perhaps in the 7th-8th
century CE, from what is now Maharashtra via the same Tulu coast.
Maharashtra and Karnataka have many villages named after the con-
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fluence of rivers, with temples dedicated to the ‘lord of the confluence’.
Is this circumstance enough to suggest that Mādhava’s family was a re-
cent arrival from the country to the north and, more consequently, that
he may thus have been instrumental in reestablishing the link beween
mainstream Indian mathematics (e.g., Bhāskara II) and Kerala?

Some of the individuals who carried forward Mādhava’s teachings
– like Parameśvara, Mādhava’s direct disciple and a great astronomer –
have only incidental roles in the story of calculus. The central figures
for us are Nı̄lakan. t.ha, Mādhava’s great-grand pupil and the author of
Tantrasam. graha and many other books; Jyes.t.hadeva whose only (extant)
piece of writing appears to be Yuktibhās. ā; and Śaṅkara (Vāriyar) who
wrote Yuktid̄ıpikā and Kriyākramakar̄ı among other works. The last
two were both disciples of Nı̄lakan. t.ha and both claimed that their own
books Yuktibhās. ā and Yuktid̄ıpikā were no more than commentaries on
his Tantrasam. graha.

Nı̄lakan. t.ha’s life is relatively well documented in his own writings
as well as in his contemporaries’ and disciples’. Born in Trikkandiyur in
Kelallur house (mana) in 1444, he seems to have been closely associated
with the temple in Alathiyur. A man of many parts and good in all of
them – mathematician-astronomer, epistemologist, philosopher, expert
in ritual, influential adviser to the politically powerful – he comes clos-
est to being the conscience-keeper of the Nila school and has been its
emblematic representative for the generations that followed. He lived at
least till the 1520s.

The dates of Jyes.t.hadeva are only roughly known. His appren-
ticeship under both Nı̄lakan. t.ha and Dāmodara (Nı̄lakan. t.ha’s teacher and
Parameśvara’s son) would suggest that he was born some time in the
last quarter of the 15th century. He is mentioned by both Śaṅkara
and Acyuta with reverence; that and certain indirect inferences to be
drawn from Yuktibhās. ā about its date (see the next section) would seem
to indicate that he lived well into the second half of the 16th cen-
tury12. As for where he came from, K. V. Sarma in a fine piece of
detective work (Introduction (in English) to [18], building on a sugges-
tion of Kunjunni Raja [17]), has linked a reference in mixed Malayalam
and Sanskrit in an obscure manuscript that says, “Jyes.t.hadeva, disciple
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of Dāmodara, is [a] Par.aṅṅōt.t.u Nampūtiri, the same person who com-
posed Yuktibhās. ā” to the common colophon at the end of each chapter of
Yuktid̄ıpikā which includes the phrase “the venerable twice-born (brah-
min) living in Parakrod. a” (parakrod. āvāsa dvijavara). The conclusion,
that Jyes.t.hadeva belonged to Par.aṅṅod. (the ending ...t.t.u in the quote
indicates the genitive or possibly the ablative case in Malayalam) and
that Parakrod. a is its homophonic Sanskrit rendering, is credible.13

But what and where was this place? Sarma takes the view that
it was the name of the ancestral house (illam or mana) or family to
which Jyes.t.hadeva belonged. That is possible but not required by either
grammar or common usage. More reasonable and equally consistent with
grammar and usage is the interpretation that “Par.aṅṅōt.t.u Nampūtiri”
means “the brahmin of (or from) Tr.pr.aṅṅod [village]”;14 tiru or tr. (hal-
lowed, sacred, auspicious) is a prefix often attached to the names of places
with major temples (Tirunāvāya: the sacred spot of the Nāvā Mukunda
temple). That will bring a pleasing unity, with every important temple
of the region having a mathematical/astronomical connection. (It should
be added that all the temples mentioned date from well before the period
of our interest).

Śaṅkara also, though a prolific author, was reticent about his per-
sonal details. But there are quite a few bits of circumstantial evidence,
ranging from his tribute to “the venerable brahmin” to the estimated
dates of his two major books Yuktid̄ıpikā and Kriyākramakar̄ı, all well
analysed by Sarma ([18]), establishing that he was perhaps a generation
younger than Jyes.t.hadeva. That is consistent with the dates assigned to
Jyes.t.hadeva here and with Plofker’s conclusion ([1] citing Pingree) that
Śaṅkara’s productive period spanned the middle third of the 16th cen-
tury, though it is slightly at odds with Sarma’s dating of Jyes.t.hadeva.
Tr.kkut.aveli, his native village according to Sarma ([18]), is on the Nila
but about 50 km upstream, making it the most far-flung of the places
associated with the core of the Nila group.

From the social-historical angle, the notable fact about Śaṅkara is
his caste name Vāriyar, making it clear that he was not a Nampūtiri. He
was thus the first known nonbrahmin astronomer-mathematician of the
Nila school, indeed of Kerala and maybe even of all Hindu India. That
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fits in with the social practices of brahmins in Kerala, in particular their
marriage customs. Some time around the 12th-13th centuries, they be-
gan following an extreme form of primogeniture in which only the eldest
son could formally marry a brahmin woman and father brahmin chil-
dren. Younger sons made perfectly open and legitimate but less ‘official’
alliances with non-Nampūtiri women; their offspring were not considered
brahmins and carried caste apellations like Vāriyar, Pis.ārat.i, etc. They
had access to temples but for the inner sanctum, and the portals of learn-
ing were open to them. With the effective birth rate of Namputiris thus
brought down substantially below what was the norm, the proportion of
brahmins fell over the centuries. It was perfectly natural then for non-
brahmins having brahmin fathers like Śaṅkara and Acyuta to have made
up for the shortfall and risen, in due course, to intellectual prominence15.

The texts

Of whatever Mādhava himself might have written about his math-
ematical discoveries, nothing but a few fragmentary formulaic verses cited
by his followers has survived. The loss is doubly regrettable. First of all,
we are left ignorant of his immediate mathematical antecedents, a lack
which is not adequately made up by the later writers who, meticulous
though they are in the presentation of his work, are of no help in trac-
ing the evolution of the specific ideas and techniques that they describe.
Our only hope then is to prospect for whatever mathematical scraps (as
distinct from the common mathematical heritage, e.g., the sine table of
Āryabhat.a) we can find in the writings of his direct predecessors. Such
an enterprise is not very productive;16 their surviving writings do not
presage any of his results or deep ideas.

Secondly, what would one not give to come upon a miraculously
preserved ‘Mādhav̄ıya’, to be able to read an account of Mādhava’s achieve-
ments in Mādhava’s own words? Was he aware, as Āryabhat.a was and
Newton and Leibniz in their time were, of the revolutionary transforma-
tion that he had brought about in mathematical thought? Would he have
let posterity know, as Āryabhat.a ceratinly did,17 that he was? Most fas-
cinatingly, how would he have acknowledged his debt to Āryabhat.a’s vi-
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sion? – for there can be little doubt that one of the strands that Mādhava
wove into the fabric of his calculus, infinitesimal geometry, leads directly
back to Āryabhat.a, owing little to the work of the intervening 900 years.
There is, alas, no Mādhav̄ıya,18 so all we can try to do is to guess, but
with discipline and rigour.

As though to make up for Mādhava’s silence, most of his intel-
lectual descendents turned out to be very articulate as far as the details
of what he accomplished are concerned, filling the gap adequately each
in his own way. They were also unanimous in giving him credit for all
the novel ideas and results, including important auxiliary ‘lemmas’, (e.g.,
j̄ıveparaspara-nyāyam, the addition theorem for the sine function), none
more freely than Śaṅkara. The following summary is concerned only with
those texts which matter in the story of calculus.

The urtext of the Nila school’s new mathematics as well as the as-
tronomical refinements it gave rise to is, by common consent, Nı̄lakan. t.ha’s
Tantrasam. graha ([18]) written in 1500. It is a relatively compact work of
431 two-line verses divided into 8 chapters of unequal length. The chap-
ter headings make it clear that it was meant mainly as an astronomical
compendium. The new mathematics of Mādhava is to be found mostly
in chapter 2, the second longest. There are no proofs. Even outline jus-
tifications of the new results quoted are absent, which is not surprising
since nothing less than a full yukti would have convincingly established
their validity. Nı̄lakan. t.ha certainly could not have said, as he did about
the theorem of the diagonal (Pythagoras’ theorem), that they should be
“self-evident to the intelligent” – there is nothing self-evident about the
π series for example. There are also few explanations of the logic of what
is being attempted and accomplished, especially in the purely mathemat-
ical parts. In short, Tantrasam. graha is not the kind of book that helps
us get behind the hard facts and take a look at the ‘metaphysics’.

Much (20 or 25 years) later, in the wisdom of his old age,
Nı̄lakan. t.ha wrote a commentary, Āryabhat.ı̄yabhās.ya, on the three sub-
stantive chapters of Āryabhat.ı̄ya. This is in extensive Sanskrit prose and
full of insights that are found nowhere else – perhaps the most profound
of Nı̄lakan. t.ha’s works. Of special value to us are comments illuminating
the chapter on mathematics (Gan. itapāda), as they help in tracing the
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roots of Mādhava’s calculus to Āryabhat.a. Aside from the mathematical
insights, these comments occasionally come in handy in the mundane
business of dating texts. For instance, Nı̄lakan. t.ha’s well known remark
(conjecture?) on the irrationality of π and his turning of Āryabhat.a’s
approximate treatment of the difference equation for the sine into an
exact one, both of which are central to the concerns of Yuktibhās. ā and
will be discussed later, find no echo in it, a work written by his own dis-
ciple following, self-professedly, his own Tantrasam. graha. A reasonable
inference is that Yuktibhās. ā was written after Tantrasam. graha but be-
fore Āryabhat.ı̄yabhās.ya. Since Nı̄lakan. t.ha wrote two more books at least
after Āryabhat.ı̄yabhās.ya, one of them a major work, we may conclude
with some confidence either that he remained intellectually sharp well
into his eighties or that Yuktibhās. ā itself is to be dated not much after
1520 (Sarma’s preferred date is around 1530 [19]).

For the details of the reasoning (yukti) that Tantrasam. graha does
not provide, we have to turn to the two much longer works of his dis-
ciples, Yuktibhās. ā and Yuktid̄ıpikā, both of which start off by acknowl-
edging their debt to Tantrasam. graha. Though the very first sentence of
Yuktibhās. ā says: “. . . [I] begin by explaining all the mathematics useful
in the motion of heavenly bodies following Tantrasam. graha . . .”,19 it
is more an independent treatise than a canonically organised bhās.ya or
vyākhyā. Yuktid̄ıpikā also says (in its third verse) that it is written as a
detailed analytic commentary (vyākhyā) on Tantrasam. graha and actually
follows the appropriate format, with a verse or a group of verses taken up
for detailed, sometimes very detailed, exposition. The thematic unity of
the two books, inspired by their common source, is further underlined by
Yuktid̄ıpikā’s acknowledgement, in the chapter-ending verses mentioned
earlier, of what it owes to Jyes.t.hadeva: “Thus have I set out . . . the ex-
position that has been well-stated by the revered brahmin of Parakrod. a
. . .” (Sarma’s translation [18]).

Nevertheless, the two are often different in the relative importance
given to the computations and propositions that make up the whole pic-
ture, a prime instance being their treatment of the interpolation formula
of Mādhava. In fact the approach of Śaṅkara to the whole circle of ideas
leading to the sine/cosine series is in a markedly different perspective
from Jyes.t.hadeva’s. This has implications for the ongoing ‘calculus or
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not?’ debate. More importantly, it shines a light on the different per-
ceptions the main personalities of the Nila school had of the the new
mathematics of Mādhava they were gradually coming to terms with.

For a scientific text in metrical Sanskrit, Yuktid̄ıpikā is excep-
tionally long – for instance, the 80 stanzas of the second chapter of
Tantrasam. graha get 1102 stanzas of commentary from Śaṅkara, a ver-
itable tour de force of mathematical versification. There are detailed
demonstrations of the power series representations and the interpolation
formulae are given a very elaborate treatment. This particular facet of
Śaṅkara’s voluminous writings has been the subject of a thorough series
of studies recently by Plofker ([8,1] and other references cited there) and
so we can leave it at that for the present, returning to specific points as
the occasion arises.

Just as Nı̄lakan. t.ha returned in his old age, tangentially as it were,
to some of the material he had set out earlier in his Tantrasam. graha
by reexamining Āryabhat.ı̄ya from the new post-Mādhava perspective
– a conclusion supported by many citations and acknowledgements,
e.g., “proofs [given by] mathematician-teachers such as Mādhava”
(mādhavādigan. itajñācāryayukti), at the end of the commentary on
Gan. itapāda –, so did Śaṅkara revisit Yuktid̄ıpikā. Late in life he wrote
– it is difficult to know precisely when but the work was left unfin-
ished at his death – an extensive commentary ostensibly on Bhāskara
II’s L̄ılāvat̄ı (mid-12th century), named Kriyākramakar̄ı. Nı̄lakan. t.ha
used Āryabhat.ı̄yabhās.ya partly to contextualise the Nila work within the
Āryabhat.an framework and, conversely, Mādhava to finally validate the
cryptically expressed vision of Āryabhat.a. Perhaps the choice of L̄ılāvat̄ı
as the object of his return to roots says something about Śaṅkara’s own
view of what Mādhava really achieved. L̄ılāvat̄ı became the most pop-
ular of Indian mathematical texts, even more than the Gan. ita chapter
of Āryabhat.ı̄ya, but it is not on the same wavelength as the Nila school:
the only overlap in matters relating to infinitesimal methods concerns
the formulae for the surface area and volume of the sphere. Neverthe-
less Kriyākramakar̄ı has long passages on the Nila results, including the
power series ([20] has extensive extracts), but without establishing any
organic links they may have with the appropriate parts of L̄ılāvat̄ı; in fact
a high proportion of its material on circle geometry is lifted verbatim from
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Yuktid̄ıpikā and so it does not need to be looked at independently of the
latter.

All in all, one carries away the impression that, unlike Nı̄lakan. t.ha
who used the new methods of Mādhava to illuminate the enigmatic sūtras
of Āryabhat.a, Śaṅkara’s gaze was turned the other way, seeking the seeds
of the Nila revolution in the conventional wisdom of Bhāskara II. As we
shall see, they cannot be found there.

Since most of the rest of this article is going to be about the con-
tents of Yuktibhās. ā, only some general prefatory remarks on what makes
it unique and worthy of careful study are offered here. The external at-
tributes of this uniqueness are now well-known: it is in Malayalam, not
Sanskrit – as the word bhās. ā in its name proclaims – and it is in prose.
It is also now accepted that it is the prime exhibit for the case that
Indian mathematics did not function on faith and authority (and some
computation) alone but demanded adherence to a set of principles of val-
idation20 the application of which led to yukti (or upapatti in a slightly
narrower sense) which I shall often simply call a ‘proof’. That accounts
for the first half of the book’s name; indeed, in the entire book there are
only two nontrivial (as it happens, highly nontrivial for its time) results
(one of them actually a collection of results) for which the proofs are not
given.

Less immediately obvious are the quality and style of presenta-
tion. The language is informal and down-to-earth, almost colloquial, the
tone persuasive rather than professorial. There are no patronising man-
nerisms as with other authors; no proof is withheld as a challenge to the
adept as often done by Bhāskara II or because it is either beyond their
comprehension (Śaṅkara in connection with a combinatorial formula aris-
ing in the derivation of the sine series) or “self-evident to the intelligent”
(Nı̄lakan. t.ha about the theorem of the diagonal). As for the substance
the language conveys, it is developed in a manner very much to the point,
sharp and logically well-structured. It is also markedly ‘theoretical’, em-
phasising principles and with very few illustrative examples provided to
mitigate the rigour. There are even (rare) occasions when Jyes.t.hadeva
actually excuses himself for falling back on time-honoured conventional
numbers as proxies – parārddham (1017) for an unboundedly large num-
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ber into which the unit tangent is divided (the π series) and 24 for an
arbitrary number into which a quadrant of the circle is divided (the sine
series). Overall there is a degree of mathematical insight, sophistication
and taste that is quite surprising at first meeting – and not only in com-
parison with other contemporaneous texts – and of which we will meet
instances as we go along. Especially noteworthy is the care devoted to
the presentation of ideas which, in retrospect, we can identify as being
truly original and profound and, conversely, the summary dismissal of
methods which have no more than computational value.

As in many other Indian treatises, the opening chapter is de-
voted to the decimal place-value construction of positive integers and
the rules of arithmetical operations with them.21 Of particular interest
to the present article is the list of names of the powers of 10, ending
with parārddham (1017) which will later be used as a proxy for a very
large number, to be allowed to grow unboundedly in denominators as the
means of introducing ‘infinitesimals’.

Of chapters 2-5, the very brief chapter 4 on the ‘rule of three’
(trairāśikam) in its arithmetical context is of interest for its application
later to the geometry of similar triangles. The proportionality of sides of
similar triangles and the theorem of the diagonal (Pythagoras’ theorem)
are of course the two main pillars on which Indian geometry was built
from the time of the Śulbasūtra, through Āryabhat.a’s trigonometry, right
down to their adaptation by the Nila school to an infinitesimal setting.
The Pythagorean theorem itself is dealt with in the opening section of
chapter 6.

Chapters 6 and 7 are dominated by the mathematics of the power
series, treated in great detail; the calculus computation of the area and
volume of the sphere is tacked on at the end of chapter 7, after a digression
on the properties of cyclic quadrilaterals (geometry à la Brahmagupta,
nothing infinitesimal here). These two chapters will obviously be the
main object of our study. Apart from the many novelties, what they
convey powerfully is the care and attention paid to matters that we will
now call analytic (as distinct from the numerically approximative): limits
are carefully defined and implemented, quantities which are of a higher
order of smallness are isolated and neglected and their contribution then
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actually shown to vanish in the limit; such issues were never broached
in the pre-Nila texts because they never arose. When it comes to the
meaning to be attached to infinite series, there are clear statements to
the effect that they are exact if and only if they are not terminated;
even the need to ensure that variables (tangent or cotangent) in which
the expansion is made in different domains of the angle remain ‘small’ is
addressed.

The calculus of the π series

All of chapter 6 of Yuktibhās. ā is devoted to the problem of deter-
mining the ratio of the circumference and the diameter of a circle exactly
or to arbitrary precision. The aim is achieved in the development of the
basic π series, which is therefore the centrepiece of the chapter, with ev-
ery ‘lemma’ and ‘proposition’ needed in establishing the ‘main theorem’
taken up and proved in logical sequence. After its easy generalisation
to the arctangent series, the chapter concludes with an exhibition of
conceptual and technical virtuosity by asking for methods of overcom-
ing the slow rate of convergence of the basic π series and finding them:
through estimates of the remainder after truncation at a finite but arbi-
trary number of terms and by developing accelerated π series, the basic
series modified by reordering the terms for faster convergence.22

Before taking up the π series, Yuktibhās. ā describes the classical
method of calculating π to any given precision by approximating the
circumference of a circle by the perimeter of a sequence of circumscribing
regular polygons starting with a square.23 The description ends with the
passage24 ([YB 6.2]):

If, by the method for the production of the side of the 16-
gon [from the 8-gon], [we] double and redouble the number
of sides to the 32-gon and so on and if the number of vertices
is increased beyond count (asam. khya), [it becomes] of the
nature of a circle (vr. ttaprāyam). Imagine this to be the circle.
The diameter of this circle is the side of the initial square.
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The passage is noteworthy for being the first explicit statement of the
method of computing arbitrarily accurately the length of a curve (in
this case the circumference) by a process of dividing it by a number n,
approximating each of the resulting arc segments by a line (in this case
the tangent through the midpoint of the arc) segment, adding them up
and finally taking n to infinity (asam. khya). This is a sort of almost-
calculus – it requires, in an essential way, the notion of a limit to be
brought in, unlike in Archimedes’ method of exhaustion. But Yuktibhās. ā
does not pursue the method to the limit for the reason that it entails
computing an increasing proliferation of square roots. What is infinitely
(no pun!) more significant is the laying to rest, by means of the one word
asam. khya, of a ghost that had haunted geometry for close to a thousand
years: the belief that the 96th part of the circumference is equal to its
sine (Bhāskaras’ fallacy, see section 7 below).

As the standard against which to place Yuktibhās. ā’s method of
obtaining the π series and as a natural introduction to the basic notions of
calculus in practice, it is useful to set down, without being too pedantic,
how the ‘Gregory-Leibniz’ series is treated in today’s classrooms. For an
angle θ lying between 0 and π/4, define t := tan θ, 0 ≤ t ≤ 1. Then
dt/dθ = 1 + t2. Invert both sides of this equation and use the formula
for the sum of an infinite geometric series (or use the binomial theorem):

dθ

dt
=

1

1 + t2
= 1− t2 + t4 − · · · .

Now integrate term by term using the formula∫ 1

0
tkdt =

1

k + 1

for k = 2, 4, · · · and we get the series.25

The steps in this proof are all familiar though the metaphysics
behind them is not often explicitly noted in our textbooks:

i) Differentiation is (and, historically, always has been) a geometric
process in its essence, that of finding the tangent at any point θ to the
graph (local linearisation) of the function tan(θ). In practice dt/dθ or
dθ/dt can be determined in several apparently different ways but they
all boil down to the geometry of the circle.
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ii) Inverting the derivative makes t rather than θ the independent
variable. The step takes advantage of the contingency that the derivative
is an explicitly expressed function of t so that the integration is reduced
to a quadrature.

iii) But the (indefinite) quadrature does not lead to a ‘simple’
function of t. It cannot: if it resulted in a rational function for example,
then π would be a rational number. The recourse to the infinite series
expansion works because we have prior knowledge of the values of inte-
grals of (positive integral) powers ‘from first principles’; in a sense the
expansion reconciles the wish for easy integration with the irrationality
of π.

iv) Integration, in general, is essentially an arithmetical process,
that of adding up the slopes of the tangents at all points of the graph of
the function.

v) Underlying everything is the fundamental theorem of calculus
which is no more than the ‘infinitesimalisation’ of the common sense
principle: the whole is the sum of its parts. As one would expect of
such a general principle, it is of universal applicability and has many
variants and generalisations. The simplest form, the one which is used
here, expresses the mutually inverse relationship between the operations
of differentiation and integration:∫ y df(x)

dx
dx =

d

dy

∫ y

f(x)dx = f(y)

for any fixed lower limit of integration where f is a (real) function (sat-
isfying some mild conditions to ensure that all the operations are well
defined) of one real variable x.

vi) And of course we have taken advantage of the Cartesian equiv-
alence of functions and their graphs to pass freely between the geometric
and the analytic languages.

In their geometrical guise, the π and the arctangent series are
examples of what came to be known as rectification – finding the length
of a curve between two given points – in fact the simplest nontrivial
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example, the curve being an arc of a circle.26 Yuktibhās. ā chooses to
rectify one octant, perhaps through a feeling for the symmetry of the
circle.27 As shown in the figure, O is the centre of the unit circle, OA a
radius, AB the unit tangent (half the side of the circumscribing square,
tangent at A) and P a point on AB. Then length(AP ) is tan θ =: t,
with θ = angle(OA,OP ). What is required is to find the length of the
arc corresponding to AB (one-eighth of the circumference) as a number
or, more generally, the arc corresponding to AP (= θ) as a function f of
t. Thus t is the independent variable and the function f is arctan with
θ = f(t) (see Fig.1).

Fig. 1: Determining the ratio of the circumference to the diameter of a
circle.

Yuktibhās. ā begins by dividing AB into many equal segments by
marking points Pi, of length 1/n (P0 = A and Pn = B) where n is a large
number: “[On the unit tangent], mark a certain number of points, very
close, so as to divide it into equal intervals. As large as the number is, so
accurate (sūks.mam) will be the circumference” (YB 6.3.1). If the line OPi
intersects the arc atQi then, corresponding to the tangent segment Pi−1Pi
of length 1/n, we have the arc segment Qi−1Qi. In modern notation
we will write δt = 1/n and δθ = δf(t) = f(i/n) − f((i − 1)/n) =
arc(Qi−1Qi). The key geometrical step now is to replace arc(Qi−1Qi)
by (1/2) chord(Qi−1Qi+1) = length of the perpendicular from Qi−1 to
OPi = sin δθ (see Figure 6.5 in [13]).28 In the limit n→∞ (δt→ 0), the
half-chord tends to the tangent (of vanishing length) to the circle at Qi,
but the notion of tangency is not something that Yuktibhās. ā is concerned
with.29 The pertinent point is that, as the half-chord gets smaller and
smaller, its length approaches the arc length: sin δθ → δθ as δθ → 0 or,
more faithfully to the text, sin(θ/n) → θ/n as n → ∞. Since δθ → 0
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as δt→ 0, we can summarise how the geometry simplifies as n becomes
very very large, as Yuktibhās. ā does in the last sentence of section 6.3.1:
“If the segments of the side of the (circumscribing) square are very very
small, these half-chords will be almost the same as the arc segments”.

If we are asked to mark the birth of calculus by identifying one
paradigm-changing insight, we cannot do better than cite this principle of
asymptotic linearisation. The name will evoke the principle that underlies
all of the Nila work on calculus but will also serve to distinguish it from
the way infinitesimal quantities were introduced in European calculus.
Blindingly self-evident as it may appear, this property of arcs and chords
of circles eluded everyone who came between Āryabhat.a and Mādhava
as we shall see in section 7. Āryabhat.a himself almost surely understood
that the equality of the arc and the chord was only an approximate one so
long as they both remained of nonzero length. That is the natural way
to interpret the organisation and content of the verses of Āryabhat.ı̄ya
that prepare the ground for the sine table (Gan. ita 10, 11, 12), especially
the superenigmatic verse 11. Yuktibhās. ā restates the principle in slightly
different forms from time to time, but without any obvious insistence –
maybe it did become self-evident once Mādhava had grasped it and put
it to such splendid use.

The computation of the half-chord sin δθi of the arc Qi−1Qi, be-
fore taking the limit of large n, is an example of Indian geometrical
reasoning at its most typical, using some astutely chosen pairs of similar
(right) triangles (see [13], figure 6.5). The proportionality of their sides
(trairāśikam) then allows a simple calculation of the half-chords in terms
of the ‘diagonals’ (karn. n. am) OAi:

sin δθi =
δt

di−1di
=

1

ndi−1di

where di := length(OAi). As the value of sin δθi this expression is exact,
valid for any value of n. The unfamiliar diagonals may be a distraction
but they are easily got rid of by means of the theorem of the diagonal:
d2i = 1+i2/n2 (1 being the value of the radius), In any case, this geometri-
cal result expressing sin δθi, the (linearsied) variation of the function θ of
t at the ith point in terms of the variation of t, subsumes the ‘differential’
part of the problem.
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Yuktibhās. ā actually carries out some steps of asymptotic approx-
imation (by which will be meant from now on an approximation which
tends to exactness with increasing n) before eliminating the diagonals,
first by writing

1

di−1di
=

1

2d2i−1
+

1

2d2i
.

This is one of the very rare steps for which the justification is not
given but we can easily supply one. The differences between the two
sides is (di− di−1)2/2(didi−1)

2; since di− di−1 is of order 1/n, the error is
of second order of smallness and so is negligible when n such terms are
added as will be done during the ‘integration’ part of the problem. To the
same accuracy, the denominators d2i−1 and d2i can be equated (this step
is properly justified during the integration phase of the work, see below).
The final step is to replace sin δθi by δθi, leading to the asymptotically
exact differential relationship

δθi =
δt

d2i
=

1

n(1 + i2/n2)

or, dispensing with the now superfluous i,

δθ =
δt

(1 + t2)
.

What the geometry has accomplished in the limit n → ∞ is thus the
determination of the differential of θ as a function of tan θ.

It is a distinctive feature of the Nila approach to calculus that
taking the limit n → ∞ is delayed as late as is practical. Yuktibhās. ā
has no way to find the exact sum of δθi, namely

∑n
i=1(1 + i2/n2)−1. So

the first step it takes in integrating δθ is to expand the denominator
into an infinite series, not by appealing to the binomial theorem but by
means of a versatile technique of great antiquity, that of recursive refining
(sam. skāram as it is called in Yuktibhās. ā):

δθi =
1

n
− i2

n3
+
i4

n5
− · · ·

with the idea of doing the summation over i term by term (as long as
n is kept finite, this requires no justification).30 But here also there
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is an obstacle; while the formulae for
∑n
i=1 i

k were familiar already to
Āryabhat.a for k = 1, 2, 3, they were unknown territory for higher values
of k (for general k they involve the Bernoulli numbers). And, once again,
Yuktibhās. ā gets around the obstacle by identifying and evaluating the
asymptotically dominant form of the sum.

The evaluation of these sums and the passage to the limit n→∞
are among the topics most carefully treated in Yuktibhās. ā (sections 6.4
and 6.5). Several deep ideas and methods pointing to future develop-
ments make their first appearance in these sections ([7]). Since good,
faithful accounts in English and in modern notation and terminology of
this material ([3,13]) are available, only a brief summary highlighting the
calculus-related points is offered here.

Denote the exact sum of the half-chords by (all sums over i are
from 1 to n)

Sn :=
∑

sin δθi =
1

n

∑ 1

di−1di
.

We have seen above that Sn can be approximated by

S ′n :=
1

2n

∑
(

1

d2i−1
+

1

d2i
)

and further by

S ′′n =
1

n

∑ 1

d2i
.

The second approximation is also asymptotically exact because
S ′n − S ′′n = (1/2n)(1/d20 − 1/d2n) = 1/4n since d20 = 1 and d2n = 2 for
the unit circle (Yuktibhās. ā: “As the segment of the side (AB) becomes
smaller, the one-fourth part (1/4n) can be discarded”). It is this final
form of the approximation that leads, as we saw before, to the standard
expression for the differential of θ with respect to t and hence to the
discrete integration (sam. kalitam) formula

S ′′n =
∞∑
k=0

1

n2k+1

∑
i2k.

The limit as n→∞ of the right side is therefore π/4.
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Lacking an exact formula for the finite sum
∑
i i
k for general k,

Yuktibhās. ā resorts to evaluating the asymptotically dominant form of the
known exact expressions for k = 0, 1, namely n and n2/2. It then relates,
by an elementary but clever rearrangement of terms, the dominant form
for the case k = 2 to that for k = 1 and then, again, k = 3 to k = 2
and explains carefully how the procedure can be carried through for all
powers of k. The end result is the sam. kalitam quoted earlier,

lim
n→∞

1

nk+1

n∑
i=1

ik =
1

k + 1
,

thus completing the evaluation of the integrals of positive powers.

The reduction of the sum of the kth powers to the sum of the
(k − 1)th powers is the first known instance of a proof by mathematical
induction in India. Both the elaborate, step-by-step, description of the
procedure and the accompanying explanations (YB 6.4) make it unmis-
takably clear that Jyes.t.hadeva is aware that he is presenting a method of
proof far removed from the traditional geometry-based techniques of sum-
ming series. (Many of the Nila mathematicians, including Jyes.t.hadeva
himself, were partial to these geometric techniques).

Of far geater interest in the context of calculus, however, is the
rearragment trick mentioned above. As discussed in some detail in [7], it
is a special case of the elementary identity

n−1∑
i=1

(n− i)ai =
n−1∑
i=1

i∑
j=1

aj

and is none other than a discrete version of the rule for integration by
parts (the Abel resummation formula) used, if one wishes to make a point
of it, in conjunction with the discrete fundamental theorem.31

After this resumé, it is in order now to try and benchmark Yuk-
tibhās. ā’s approach to the π series against the points i) to vi), noted at
the beginning of this section, that characterise its modern derivation.

i) Local linearisation is a geometric operation (even when ex-
pressed as the differentiation of an analytically given function), but there
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is no unique way of doing the necessary geometry. Yuktibhās. ā’s approach
to linearising θ as a function of tan θ may be original and superficially
unfamiliar, but the essential geometric input is the orthogonality of the
radius and tangent at any point on the circle.

ii) The geometry leads directly to δ sin θi as a function of i/n and
then, in the limit n → ∞, to δθ/δt as a function of t. The sam. kalitam∑
i δθi is the discrete counterpart of quadrature.

iii) The expansion into an infinite series is identical even if the
particular way of justifying it may have come from different sources. The
suspected irrationality of π may have had a motivational role in the Nila
school’s turning to infinite series to pin down its ‘exact’ value ([6]). Their
acceptance as being mathematically legitimate almost certainly had to
do with the long familiarity with decimal numbers. In Europe, especially
in the early work of Newton, the approach to infinite series was more
‘functional’, but Newton too modelled algebraic operations with infinite
series on arithmetical operations on the decimal representation of integers
(the tract Die Methodis Serierum ... in [23]).

iv) The idea of integration as the adding up of linearised local
variations (differentials) of a function is essentially the same in India and
in Europe. There are ‘ideological’ differences – such as the Indian resort
to division by a large number instead of defining infinitesimals directly
as in Europe – but they are of little mathematical consequence.

And then there are the two methodological novelties, not only in
the historical sense but also as compared with the modern treatments:
today’s textbooks do not evaluate

∫
xkdx by induction on k; nor do they

make use of integration by parts (though Leibniz did).

v) Since the limit n→∞ is taken at the end of all computations,
the fundamental theorem of calculus has no obvious relevance. Its dis-
crete counterpart is a self-evident triviality but there is a price to pay:
in every calculation, all neglected quantities must be explicitly demon-
strated to vanish when added up in the limit (in relation to what is
retained). Yuktibhās. ā does this work with care. Once that is done, in
each calculation, sam. kalitam is the Riemann sum/integral.
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The postponement of the limit to the very last and the conse-
quent devaluation of the fundamental theorem lies at the root of the one
major difference in the metaphysical grounding of Indian and European
calculus. This is an issue which will concern us later on.

vi) There was of course no Cartesian equivalence in Indian math-
ematics: everything that led up to calculus revolved around the notions
of numbers and geometry, especially of the circle.

I conclude this section by noting a curious omission: Yuktibhās. ā
says nothing about the possibility of π being an irrational number. In
his bhās.ya of Āryabhat.ı̄ya, Nı̄lakan. t.ha famously interprets Āryabhat.a’s
qualification of his (rational) value for π as proximate (āsanna) as signi-
fying that an exact value for it cannot be found since there is no common
measure for the circumference and the diameter that will not leave a re-
mainder in at least one of them. After the elaborate care with which
Yuktibhās. ā addresses the need to include all the terms in the series for
exactness (the last sentence of YB 6.3.3 and the last paragraph of YB
6.4.1 for example), one would expect a remark to the effect that π may
not have a finite numerical expression, especially in view of the think-
ing of his own teacher. The reason for the omission may just be that
there was no yukti available for Nı̄lakan. t.ha’s conjecture (naturally!). Or,
perhaps more probably, Nı̄lakan. t.ha had not yet thought through and
written Āryabhat.ı̄yabhās.ya at the time Yuktibhās. ā was completed.32

The sine series: setting up and solving a

differential equation

The π series is an enabling result. Without an accurate value for
π, neither accurate sines as a table for discrete angles nor the sine as an
exact function of the angle can be determined; that is the reason why the
verse in Āryabhat.ı̄ya giving its value as 3.1416 (Gan. ita 10) immediately
precedes the two verses describing the preparation of the sine table. The
order of presentation in Yuktibhās. ā (and in other texts) respects the
logical order. So, having set down the highly accurate estimates for the
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truncation errors in the π series at the end of chapter 6 – no calculus is
involved here – Yuktibhās. ā begins chapter 7 by recalling the values of the
sine and the cosine for some standard angles as well as some of the basic
trigonometric identities and symmetries. The serious business, that of
coming to grips with an accurate/exact evaluation, begins after this.

There are three clearly demarcated themes in Yuktibhās. ā’s ap-
proach to the whole complex of ideas culminating in the power series
for the sine and the cosine: the working out of the 24 tabulated sines
of Āryabhat.a at angles mε, ε := π/48,m = 1, 2, · · · , 24; Mādhava’s sec-
ond order interpolation formula for sin / cos(mε + δ), 0 < δ < ε; and a
very full account of the power series. They get contrasting treatments in
the book. The tabulated sines are dealt with adequately, starting with
Āryabhat.a’s own initial value sin ε = sin 225′ = 225′ and proceeding step
by step, always subject to the approximation sin ε = ε. But, apart from
a perceptive passage cautioning against using the rule of three for arcs
because of their curvature (YB 7.4.1), it does not seriously prepare the
ground for the way the power series will be approached, except that sine
differences are defined and utilised in the computation - the second dif-
ferences do not make an appearance here. The computation is described
in two pages of text (YB 7.4.2). All in all, one comes away with the im-
pression that for Yuktibhās. ā the table itsef is worthy of attention mainly
on account of its venerable past (pūrvaśāstra, YB 7.4.1).33 There are,
however, scattered remarks here and there in this part of the text (like
the one on the effect of curvature) that connect to the infinitesimal think-
ing to come. Their significance is best appreciated after we are done, in
this section and the next, with the ‘technical’ material.

The interpolation formula is taken up next, but so briefly and
in such a dismissive fashion as to leave little doubt that Jyes.t.hadeva
considered it a distraction from his main purpose. Though this too has
its part to play when it comes to assessing the calculus credentials of the
material in chapter 7, it is a negative one as discussed in some detail in
[7].

The complete derivation of the power series for the sine (and the
cosine; I will often omit an explicit reference to the cosine in what fol-
lows) series occupies all of section 7.5 of Yuktibhās. ā, about 10 printed



798 INDIAN JOURNAL OF HISTORY OF SCIENCE

pages in Sarma’s edition. In the differential part of the work, the scheme
followed is exactly the same as in the case of the π series: divide an arc
(the ‘independent variable’ θ) into a finite number of equal segments and
determine geometrically the difference between the sines (the ‘function’)
of neighbouring arc segments. But as we know now, the integral part
of the problem does not lend itself to a solution by quadrature since the
derivative of the sine is the cosine and a power series expansion of the co-
sine is equally unknown, being part of the problem. The way Yuktibhās. ā
handles this difficulty signals an unexpectly original advance, even from
our present perspective; it amounts (in the asymptotic limit) to solving
the equations for the sine and the cosine simultaneously or, equivalently,
showing that the sine satisfies the familiar second order differential equa-
tion, converting it into an integral equation (the fundamental theorem!)
and solving the latter by an iterative method.34 True to the Nila philoso-
phy, what are actually solved are the corresponding difference equations
in the form of multiple repeated sums, with frequent evocations of the
asymptotic limit to be taken eventually.

It is evident from the language that Jyes.t.hadeva had in mind,
while working out the procedure for finding the differential (YB 7.5.1),
a division of the first quadrant into the canonical 24 parts. But any
reservation one might have on this account is dispelled immediately (YB
7.5.2) by an injunction to think of the arc segments as being “as small
as one wants” followed by: “One has to explain in one (definite) way;
that is why [I] have said [up to now] that a quadrant has twentfour
chords”; the geometry of sine differences works for any arc cut into any
number of equal segments. Accordingly, take an arc of the circle of unit
radius subtending an angle θ at the centre and cut it into 2n equal parts.
(Yuktibhās. ā makes an n-fold division, but also uses the midpoints of the
segments in the geometry; dividing by 2n from the outset simplifies the
description). The values of the functions sin and cos at the ith point
of the division are thus si := sin iδθ and ci := cos iδθ with δθ := θ/2n,
i = 1, 2, · · · , 2n. The usual clever choice of similar right triangles (see [3]
or [13] for the details) then leads to the difference formulae

δsi := si+1 − si−1 = 2s1ci,

δci := ci+1 − ci−1 = −2s1si
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for i = 1, 2, · · · , 2n − 1 with s0 = 0. (The right side depends explicitly
on n through s1 = sin(θ/2n)).

These exact relations,35 true for any n > 1, capture the essential
geometry that goes into finding the derivatives of sin and cos, just as the
exact relation sin δθi = 1/(ndi−1di) captures the geometry of dθ/d tan θ
(section 4). With this, the geometry is done. As δθ is made “as small
as we want”, i.e., as n → ∞, δsi becomes sin(θ + δθ) − sin(θ − δθ), ci
becomes cos θ and s1 → δθ and we get the derivatives

d sin θ

dθ
= cos θ,

,
d cos θ

dθ
= − sin θ.

But, compared to the situation of the π series, the sine and cosine
differences presented a formidable challenge: the right sides are not ex-
plicitly determined functions of i and hence the sum over i cannot be done
directly even in principle; it does not reduce to a (discrete) quadrature. In
the limit correspondingly, the formulae for the derivatives, viewed as dif-
ferential equations for the pair of functions sin and cos, are (first order)
linear homogeneous. Techniques for solving such differential equations
came relatively late in European calculus (second quarter of the 18th
century; Euler, d’Alambert) and were certainly unknown to Newton and
Leibniz. Yuktibhās. ā solves these difference equations by a very origi-
nal method (even by almost-contemporary standards). There are two
parts to this method. The first is a formal rewriting that employs the
fundamental theorem in its discrete version to turn the difference equa-
tions into discrete counterparts of integral equations. In the second part,
the discrete integral equations are solved by an appeal to the method
of sam. skāram, an infinitely recursive ‘refining’ of a judicious first guess
leading, in the limit, to the two power series.

The details of this process are covered in a number of recent pub-
lications, in particular [13] and, in a form and notation adapted to the
concerns of the present article, in [7]. So the very short outline given
below deals only with calculus-related issues.
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The actual execution of the procedure begins with a step that will
be familiar to the modern reader, that of converting the two coupled first
order difference (differential) equations into one second order equation.
Accordingly, define the second order differences

δ2fi := δfi+1 − δfi−1

for fi := si or ci. Substitution from one of the first order equations into
the other (no more geometry is required) leads to

δ2fi = −4s21fi

which becomes, in the asymptotic limit, the differential equation

d2f(θ)

dθ2
+ f(θ) = 0

for f = s or c. Thus what was required can be recognised by us as
the solution of the (one-dimensional) differential equation for harmonic
motion for appropriate initial conditions for sin or cos. Yuktibhās. ā finds
just such a solution by, effectively, first solving the ‘discrete harmonic
equation’ and then taking the limit.

The key conceptual input in Yuktibhās. ā’s solution is, not surpris-
ingly, the discrete fundamental theorem. The text takes considerable
trouble over this issue, devoting the second half of section 7.5.1 and most
of 7.5.2 to explaining how the sine differences are obtained by adding
up their second differences and the sines themselves by adding up their
differences36, even providing, untypically, an illustrative example by way
of the resulting formula for the 8th sine when the quadrant is cut into
24 segments. (It is after this passage that there occurs the statement
that the Āryabhat.an 24 is invoked only in a manner of speaking, as a
substitute for a generic number). The end result for an arbitrary point
in a general division of the arc is

s2i = is2 − 4s21

i−1∑
j=1

(i− j)s2j.

In particular, for i = n, the left side is sin θ and the first term on the
right is n sin(θ/n). The second term, on the other hand, has exactly the
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same structure as the corresponding sum in the working out of the π
series, the left side of the equation on p.22 above, with the coefficients
ai now identified with s2i. We can therefore do a ‘discrete integration by
parts’ as before to arrive at the result

s2n = ns2 −
n−1∑
i=1

2s1
i∑

j=1

2s1s2j,

valid for any n.

This completes the first part of Yuktibhās. ā’s method of solving the
difference equation for the sine. What the apparently trivial reordering
has achieved is to turn the original difference equation into a ‘discrete
integral equation’ as is made absolutely clear to our modern sensibility
once we take the asymptotic limit: 2s1 becomes the differential dθ, ns2 →
θ, s2j → sinφ for an angle φ lying bewteen 0 and θ and the equation
becomes

sin θ = θ −
∫ θ

0
dφ

∫ φ

0
dχ sinχ.

We could of course have got to the same integral representation by first
taking the limit of the difference equation, i.e., by formally integrating
twice (using the ‘true’ fundamental theorem of calculus) the differential
equation. In the spirit of Yuktibhās. ā, it is appropriate to call both it and
its finite version the sam. kalitam representation as the word sam. kalitam
does duty for the finite sum as well as its limiting form.

As for the second part of the method of solution, the amazing
fact37 is that the finite sam. kalitam can be carried out for any n exactly
by the repeated substition of the equation into itself. Thus, substituting
for s2j on the right of the sam. kalitam representation, we get

s2n = ns2 − 4s21

n−1∑
i=1

i∑
j=1

js2 + (4s21)
2
n−1∑
i=1

i∑
j=1

j−1∑
l=1

l∑
m=1

s2m.

The process can be continued indefinitely, the general term in the ex-
pansion being s2(−4s21)

kS2k(n−k), where the coefficients are the famous
sums of sums (sam. kalitasam. kalitam), defined recursively by Sk(0) = 0,
S0(i) = i and

Sk(i) :=
i∑

j=1

Sk−1(j)
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with values38

Sk(i) =
i(i+ 1) · · · (i+ k)

(k + 1)!
.

The series terminates for any finite n after n terms since Sk(0) = 0.39

With this solution in hand, it is now straightforward to pass to
the asymptotic limit. As n is made to tend to infinity, the number of
terms in the solution also tends to infinity, s2 → θ/n, 4s21 → θ2/n2 and
the coefficient S2k(n − k) → n2k+1/(2k + 1)!. The kth term therefore
approaches (−)kθ2k+1/(2k+1)! (the powers of n cancel out) and we have
the sine series.

The solvability of the discrete harmonic equation does a disser-
vice; it might appear at first sight that, once the solution is found, all
that is involved is a straightforward passage to the asymptotic limit with
no specifically calculus-linked step playing a role. This is an impression
created by the delaying of the limit as late as possible and by the ab-
sence of an ab initio definition of infinitesimals, its purpose being served
by the asymptotic limit n → ∞. Following from these methodological
preferences, a single limiting operation, imposed at the very end, suffices
to take care of all infinitesimal aspects of the problem. The impression
is strengthened by the ‘accident’ of the coefficient Sk(i) being exactly
computable. In these respects, the situation is different from that of
the π series where simplifications valid asymptotically had to be made
separately in the differential (in establishing δθ = δt/(1 + t2)) and the
integral (in summing powers of integers) parts. It is partly to counter
this impression that I have from time to time interposed the infinitesimal
versions of key steps in modern calculus notation in the account above.
The conceptual affinity of each stage of the development of the series
with the corresponding steps in European calculus as it evolved in its
turn should thus have become clear. As yet another illustration of these
parallels, let us note that the integral equation satisfied by sin in the limit
is just as naturally amenable to solution by the sam. skāram technique,
by the repeated substitution of the equation into itself, leading to the
identity

sin θ = θ − θ3

3!
+ · · ·+ (−)k

∫ θ

0
dφ1 · · ·

∫ φ2k−1

0
dφ2k sinφ2k
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and hence, as k is taken to infinity, to the power series.40

In concluding this section, it has to be said that the order of
my description of its contents, with its emphasis on first solving the
difference equation, deviates slightly from that of the text. Yuktibhās. ā
does follow the same path but carries out the sums of sums after replacing
sin δθ = sin θ/n by θ/n. It makes no difference computationally since the
coefficients are still the same sums of sums Sk(n), but the infinitesimal
intent is thus made clear. Throughout section 7.5, there are frequent
reminders of the limit eventually to be taken, not letting the reader
forget that the final goal is not some fancy trigonometric identity for
sin θ in terms of sin θ/n, but an exact expression for sin θ as a function
of θ. As a sample of these declarations of intent we have, in connection
with the reduction of the sum of second differences of sines to the sum
of the cosine differences (YB 7.5.2, right after the disclaimer that π/48
is only a conventional number and should be replaced by an angle “as
small as we want”), the passage

Since the arc segment is small, the śarakhan. d. ayogam (effec-
tively the sum of the cosine differences) at the midpoints of
the [equal] arc segments is almost equal to the same sum
at their ends. So we can suppose them to be the same.
The smaller the segment, the more accurate (sūks.mam) the
[resulting] sine. Taking the arc segment to be one part in
parārddham (1017) of one minute, multiply by the same num-
ber (1017), carry out the sum and then divide by the denomi-
nator (again 1017). It will be almost equal to the sum carried
out without multiplying by the denominator.

‘Denominator’ here plays the same role as n (multiplied by the number
of minutes in the arc) in our notation. As elsewhere in the text, it is
clear that parārddham is code for a very large number. Sections 7.5.3
(the values of the coefficients Sk(n)) and 7.5.4 (successive refinements
of sin θ) have several other similar comments. Particulary striking is a
passage which comes in the middle of section 7.5.3:

If the arc segment is taken as extremely (or endlessly, atyan-
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tam) atomic, the chord (sine) will become accurate. Thus if
units (rūpam) which are of the nature of zero (śūnyaprāyam)41

are added one at a time to the terms, the number (the sum)
hardly changes.

Evidently, the treatment of the sine series is less easily slotted into
our standard methods of doing calculus and the steps involved follow
a less linear trajectory than in the π series. There are after all more
ways than one of solving a differential equation and the one followed by
Yuktibhās. ā, though natural from its ‘recursive’ perspective, is not what
we are used to think of as the most elementary of them.

Very elementary calculus: the sphere

It is once again useful, as a point of reference, to start with the
simple derivation of the surface area A of a sphere of radius R as given
in a school textbook. Choose a great circle (the equator) and consider a
strip of infinitesimal width dθ between circles of latitudes θ and θ + dθ
in one hemisphere. Its area is the product of the arc segment (Rdθ) and
the circumference of the latitude circle through θ (2πR sin θ):

dA = 2πR sin θRdθ.

Integrating over the hemisphere, we get

1

2
A = 2πR2

∫ π/2

0
sin θdθ = 2πR2.

Implicit in this most elementary application of calculus to geom-
etry in dimension higher than 1 is that the student understands that the
strip is not exactly a rectangle for a finite width δθ, but tends to one as
δθ → 0, i.e., that the deviation of the area of the curved strip from that
of the (linearised) rectangle is of the second order of smallness. As befits
the first ever account of this particular way of finding the area of the
sphere, Yuktibhās. ā’s elucidation of the infinitesimal geometry that goes
into it is carefully detailed. Where it differs from the school proof is in
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the integration: effectively, what it chooses to do is to integrate the sine
by integrating its second differential, i.e., by partially solving the differ-
ential equation. Once again, the choice has something to tell us about
its attachment to tried and tested methods and is announced at the very
beginning of the section (YB 7.18) dealing with the problem:

Now [I] describe [how], combining the two principles
(nyāyam) [already] explained, [namely, that] from the sum
of the sines (pin. d. jyāyogam) arises the sum of second differ-
ences of sines (khan. d. -āntarayogam) and [that], knowing the
diameters at one place, we can apply the rule of three to any
[other] chosen place (or, in a slightly different reading, ‘as we
please’), the area of the surface of a sphere will be produced.

The two principles are the proportionality of the second difference of the
sine to the sine itself and the proportionality of the diameter of the slice
through a given latitude (“place”) to the sine of the latitude. The former
of course is the breakthrough that led to the sine series.

In addition to Sarma’s ([4]), a lightly annotated and more literal
English translation of the whole of section 7.18 is available in [6]. It is
sufficient here therefore just to indicate the main points so as to let the
parallels with the standard treatment show themselves. The first thing
to strike the reader is how graphic the detailed instructions for setting
up the geometry – the equator and the latitudes as well as a great circle
orthogonal to these, i.e., a meridian whose arcs measure the angle θ of
the latitude – are. Thus, for computing the area between two successive
latitudes (obtained, as always, by an equal division of the meridian into
segments of angle δθ), we are asked to “imagine that the circle-shaped
gap between two circles is cut at one place, removed and then spread
out”. From the resulting very narrow trapezium, we are then to “cut
out the [triangular] part outside the altitude [through one vertex], turn
it upside down and transfer it to the other side”, resulting in a rectangle
(Figure 7.21 of [13]).

The estimation of the area of the strips (“the gaps”), δA =
2πR2 sin θδθ, and their summing up (δθ is π/2n and θ is iπ/2n at the
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ith latitude, as in all earlier examples) parallel what we do today and
need no further comment. And, as earlier, the limit n → ∞ is taken at
the end. But, having gone through this key step painstakingly several
times, the explanation is brief, not bothering for example with division
by parārddham and its use as a substitute for an unbounded number. But
throughout this short section, we are reminded from time to time that
the gaps are “small”, e.g., just before concluding: “Because of smallness
[of the arc segment], the width [of the gap] is almost equal to the full
chord.”

It is when it comes to the actual evaluation of the sum/integral
that Yuktibhās. ā adopts a slightly curious procedure. It amounts to writ-
ing ∫

sin θdθ = −
∫ d2 sin θ

dθ2
dθ = −d sin θ

dθ
= − cos θ

instead of using directly the integral of sin θ or, rather, its discrete version:

−2 sin
π

2n

∑
i

sin
iπ

2n
=

∑
i

δ cos
iπ

2n
= cos

π

2
− cos 0

in the limit. What makes this curious is that it was already known (and
used in the derivation of the second difference equations) that the first
difference of the cosine is the sine. On a lighthearted note, Jyes.t.hadeva’s
predilection for reducing the solution of a simple problem to a more
difficult one already solved perhaps only goes to confirm his credentials
as a mathematician.

The volume of the sphere is obtained by following the same phi-
losophy, of slicing through the latitudes, computing the volume elements
(of the slices) and adding them up. The only (small) surprise is that the
work begins by determining the area of the circle, known since a very
long time, by a method, also probably going back to Āryabhat.a, which
can aptly be called ‘visual infinitesimal geometry’ (Figures 7.22 and 7.23
of [13]).

The surface and volume formulae have an interesting history which,
as will be argued in the next section, can be used to throw some light
on the evolution of infinitesimal ideas and the antecedents of calculus in
India.
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Sources

The 33 sūtras of the second chapter (Gan. itapāda) of Āryabhat.ı̄ya
constitute a compendium of the essential mathematics used in astro-
nomical calculations. Of these, of special interest to us is a sequence of
four consecutive verses from which flowed the mathematical ideas and,
to an extent, the techniques that culminated in Mādhava’s sine series.
Over the intervening 900 years, the evolution of geometric/trigonometric
methods followed an erratic path in more than one sense. A critical look
at the high points of this trajectory is thus called for, both as a histori-
cal necessity and as a precondition for the evaluation of what Mādhava
achieved.

The four verses are

Gan. ita 9 (second line): “The chord of one-sixth of the circumference is
equal to the radius”.

Gan. ita 10: “62,832 (the number is composed from standard number
names, though in a convoluted way, presumably for metrical reasons) is
the proximate (āsanna) circumference of a circle of diameter 20,000”.

Gan. ita 11 is very ambiguously worded. A direct reading is:

Cut (can also be read as ‘cut equally’) a quadrant of the
circle. Half-chords of equal arcs, according to one’s wish
(yathes. t.am), [are found] from triangles and quadrilaterals, by
the radius.

A more fluent but still faithful reading will be:

Divide equally, as one pleases, a quadrant of the circle. The
half-chords (sines) of equal arcs so formed can be determined
from the radius by means of triangles and quadrilaterals.

Gan. ita 12 is the verse that gives the formula for the differences of the 24
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canonical sines in the first quadrant, sinmπ/48 − sin(m − 1)π/48,m =
1, · · · , 24. The resulting numerical table is given mnemonically in verse
12 of the first chapter, Gı̄tikāpāda.

Gan. ita 9 implies in particular that sin π/6 = 1/2. It is very likely
that Āryabhat.a computed the first entry of the table (and possibly “some
others”) starting with this value and by means of the formula for the sine
of the half-angle42 and that this is the reason why he starts off with the
regular hexagon.

The first thing to note about Gan. ita 10 is that a value for π ac-
curate to five significant figures is necessary for the resulting values of
sine differences in the table to be accurate to a minute of arc, which
they are.43 The method employed to get to this value remains unknown.
A good guess is that it is based on approximating the circumference by
the perimeter of the inscribed regular 96-gon, followed by some compu-
tational tweaking of the kind that was already known in Greece and in
China, in other words the method outlined at the beginning of chapter 6
of Yuktibhās. ā (before it takes up the determination of π “without the use
of square roots”), but starting with the inscribed hexagon and doubling
the number of sides four times – the square cannot be used to get to the
96-gon. More relevant for us is the fact that more precise values for sines
for any division of the circle cannot be obtained without a more accurate
π. It is not a surprise then that the method of finding an infintely accu-
rate value for π via the series comes before the treatment of the sines, in
Yuktibhās. ā as well as in other texts of the Nila school.

The use of the word āsanna (which has a more sharply defined
meaning than ‘approximate’ as it is often loosely translated; Sarasvati
Amma ([3]) is careful to render it as ‘proximate’, close but not quite equal
to) has been commented upon by at least two authoritative bhās.yas,
those of Bhāskara I (629 CE) and Nı̄lakan. t.ha. Bhāskara’s explanation
is vague and clumsy (for translations see [26] and [20]). In contrast
Nı̄lakan. t.ha’s, which of course came after the π series was discovered and
its mathematical and epistemological implications had the time to sink
in, is crystal clear. He says that the value of π can only be given as
āsanna because it is an irrational number and sets down, in the process,
an impeccable criterion for irrationality: that the circumference and the
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diameter are incommensurable (a translation of the relevant passage of
Āryabhat.ı̄yabhās.ya will also be found in [3]).

The interesting question for us is: was Nı̄lakan. t.ha’s conjecture
made on the strength of the infinite number of terms in the π series?
That seems unlikely since he himself, in the same work, illustrates the
method of sam. skāram by applying it to infinite geometric series expan-
sions of rational numbers. Alternatively, did the suspicion that π could
not be written exactly as a fraction drive the search for its expression
as an infinite series of fractions? We may, alas, never know the answer.
What we do know is that every aspect of the work that goes into the
final product that is the π series – the initial conceptual breakthrough of
linearisation, the basic geometry and its infinitesimalisation, the reorder-
ing trick, the use of induction as a proof technique – was original, not to
be met with even in some primitive form in the pūrvaśāstra, including
Āryabhat.ı̄ya. Indeed the whole approach via series and without taking
square roots is a repudiation of Āryabhat.a’s own method of approxima-
tion. This cannot quite be said of the sine series, anchored firmly as it
was in the methods of Āryabhat.an trigonometry.

Gan. ita 12 does not say that 24 is the choice made for the number
of arcs in a quadrant, something of a surprise after the phrase “as one
pleases” of the preceding verse. It also seems that commentators differ
among themselves on how exactly it is to be read literally. But as Shukla
observes ([24]), with one exception (Nı̄lakan. t.ha), they all agree on its
meaning which in our notation is summarised in the equation

δsm = s1 −
1

m

m−1∑
i=1

si, m = 1, · · · , 24.

The initial value s1 is supposed known and, to an accuracy of 1′, it is the
value of the angle itself, sin π/24 = π/24 = 225′. The formula as it is
given depends on this approximation and also on s2− s1 being 1 in these
units and in this approximation ([25], [24]). As we shall soon see, these
two coincidences caused much confusion in the minds of Āryabhat.a’s
followers. Indeed, we have to wait for the post-Mādhava texts, Yuktibhās. ā
(as already noted) and, very explicitly, Nı̄lakan. t.ha’s Āryabhat.ı̄yabhās.ya,
to see these confusions finally banished. As in the case of π, Nı̄lakan. t.ha’s
bhās.ya reads a little more into the verse than is actually there and gives
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a geometric procedure that is free from any approximation; though he
sticks to n = 24, it is the same as that followed by Yuktibhās. ā in its
approach to the sine series. Once again, it is as though he is using
Mādhava’s work to validate Āryabhat.a’s vision; the final formula δ2sm =
(sm/s1)δ

2s1 is equivalent to the discrete harmonic equation.

In summary, the most reasonable interpretation of the choices
made in the compiling of the sine table (taken together with the num-
bers of Gı̄tikā 12) is that 2π/96 became the angular unit for reasons of
astronomical necessity, that of getting the sines accurate to one minute
of arc. The precision with which π was computed was similarly dictated.

If this was indeed the case, Āryabhat.a’s followers did not get the
point. Bhāskara I’s bhās.ya (629 CE) of Gan. ita 11, written only 130 years
after Āryabhat.ı̄ya, has an astonishing (no other word will do) passage
(Plofker’s translation [20]; see also [26]):

It is proper to say that a unit arc can be equal to its chord;
even someone ignorant of treatises knows this; that a unit arc
can be equal to its chord has been criticized by precisely this
[master].

But we say: An arc equal to a chord exists. If an arc could
not be equal to a chord then there would never be steadiness
at all for an iron ball on level ground. Therefore, we infer
that there is some spot by means of which that iron ball rests
on level ground. And that spot is the ninety-sixth part of the
circumference.44

It may seem hard to credit that this – that a circle is in reality
a 96-sided regular polygon – could have been said by an astronomer
in the long tradition of the Indian preoccupation with the geometry of
the circle but, like the Aristotelian denial of instantaneous motion, it
marks perhaps a natural stage in the progression from the finite to the
infinitesimal. In any case, it could not have been the view of just one
astronomer, however influential he may have been;45 2π/96 became not
just a practically convenient unit but the universally accepted ‘quantum’
or ‘atom’ of angle below which no one, it seems, dared to venture.
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The misunderstanding had serious consequences, nowhere more
so than in the reading of Gan. ita 11 – and it is a difficult enough task as
it is. To start with, while the role of (right) triangles is obvious in all the
trigonometry that followed, no commentator, traditional or modern, has
found a convincing use for the quadrilaterals mentioned in the stanza in
making the sine table; so one is in good company in not trying to make
sense of it. For us, the key word in any attempt to read Āryabhat.a’s
mind has to be yathes. t.am, translated easily enough as “as one wishes” (or
“arbitrarily” as it is used in today’s mathematical discourse). Its sense is
certainly not circumscribed by the number 96 and hence not exhausted
by Bhāskara I’s computation of the canonical sines by subdivision.

If we read yathes. t.am in the sense “divide the quadrant by as
large a number as one pleases” which is grammatically legitimate, the
approximate equality sin 2π/n = 2π/n only gets better and the formula
of Gan. ita 12 is still valid (with a minor change since the difference of the
first two sines is no longer 1) as is the differential method of deriving it.
It is in fact the only available method for computing a sine table starting
with an arbitrary but sufficiently small angle. It is also elementary and
efficient – no square roots. The only bit of knowledge not explicitly stated
in Āryabhat.ı̄ya that we have to attribute to the “master” in support of
such an interpretation is that he knew no arc of non-zero length is equal
to the chord but only approaches it as they both become smaller. Indeed
Bhāskara I’s repudiation of the “master” in the quote above supports
such an attribution.

Gan. ita 10, 11 and 12 in this perspective thus mark the first artic-
ulation of a certain trigonometric vision, that of getting to an arbitrarily
accurate sine table in arbitrarily fine steps with the help of an arbitrar-
ily precise value for π. In Mādhava’s mind that vision got transformed
into an analytic one, that of determining the functional dependence of
the sine on the angle. The numerous reminders in Yuktibhās. ā that the
process of infinitesimalisation is to be continued indefinitely we may take
as a tribute to this vision and as evidence of its fulfilment.

Five hundred years after Bhāskara I, we have another example of
the staying power of the 96-fold division, this time in the work of his
even more illustrious namesake, Bhāskara II. Bhāskara II has a method
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in two parts (in Siddhāntaśiroman. i and his own explanatory notes on
it) for the surface area of the sphere, resulting in the correct formula.
The first part is identical with the method followed later by Yuktibhās. ā –
slicing through latitudes, etc. – and surely served as its model, up to the
point where the area of the region between two latitudes is computed by
assuming it to be a trapezium, except that the number of latitudes is fixed
at 24. The explanation stops abruptly at this point with the declaration
that the area of the sphere is the product of the circumference and the
diameter. The second part supplies the missing details (see [3] and [27]
for these as well as translations). The end result is, not surprisingly,
that the area is the sum of sines of the 24 canonical angles (with some
adjustment for the end points). Bhāskara just sums them numerically
using the table and verifies that it is very close to the announced formula
(see [27] for the numbers).

At one point in the explanation, Bhāskara does say that more
chords will result in more annular regions but there is no evidence that
he actually resorted to a finer division; that would have required a finer
sine table and a more accurate π. And there is of course not the faintest
suggestion of making an infinitely fine division. How then did he arrive at
the neat formula to which his numerical answer was only an approxima-
tion? In looking for a plausible answer, it is perhaps useful to remember
that all kinds of correct but illegitimate results for circles and spheres can
be derived just from looking at polygons and polyhedra if only Bhāskara
I’s fallacy – that sinπ/n = π/n for some n – held. The perimeter of a
regular n-gon for example would be 2nR sin(2π/2n) = 2nRπ/n = 2πR,
independent of n, and the area of a regular 2n-gon would be, similarly,
πR2 where R is the radius of the circumscribing circle. A circle would
really be indistinguishable from a polygon.

Let us conclude with two remarks of a historical nature on the
technical means put to use in the development of the body of new knowl-
edge that Mādhava created. The first is the geometry. As is well recog-
nised now, the founding step of Āryabhat.a’s trigonometry was the asso-
ciation of an arc with its jyārdha, half the chord of twice the arc. More
instructively, an arc subtending an angle θ at the centre is associated
with the right triangle defined by radial lines through its two ends – one
of them will cut the chord of twice the arc perpendicularly at its mid-
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point. The short sides of the right triangle so defined are then sin θ and
cos θ. For an Indian geometer, this was a natural thing to do. Right
triangles and their Pythagorean characterisation (the theorem of the di-
agonal and its converse – as a geometric fact, not only as the existence of
Pythagorean triples of integers and rational numbers) date back to the
earliest of the Śulbasūtra (ca 8th century BCE), those of Baudhāyana and
Āpastamba (verses 1.12 and 1.4 respectively). So does the other main-
stay of Indian geometry, similar right triangles and the proportionality
of their sides (Āpastamba 19.8) ([28]).

The second remark concerns the generation of arbitrarily small
quantities by the use of unboundedly large positive integers as denomina-
tors. Decimal counting in India is of even greater documented antiquity
than geometry. The earliest ever Indian text, R. gveda (ca. 1100 BCE or
slightly earlier), though far from being a ‘scientific’ work, is abundantly
rich in the names of numbers formed by the application of strict gram-
matical rules of nominal composition, attesting thereby to a mastery of
decimal place-value enumeration ([11, 10]). The highest power of 10 oc-
curring in R. gveda is 104 with the name ayuta. Within a very short time
there appeared lists of names of powers of 10 going up to 1012 (then
called parārdha) and 1019 (both in the Taittir̄ıya Sam. hita) and, by the
beginning of the common era, of such enormously high powers as to be of
no remotely practical use – the concept of numerical infinity was already
very much in the air. Yuktibhās. ā, following Bhāskara II’s L̄ılāvat̄ı, stops
at parārdha (which by now denotes 1017) but it lets us know that this
was a matter of expediency. Right after the list comes the marvellously
evocative sentence: “If [we] endow numbers with multiplication [by 10]
and place-variation, there is no end to the names of numbers; hence [we]
cannot know [all] the numbers themselves and their order” (YB 1.2).

The metaphysics of calculus: two cultures

Technical innovations of originality and power generally end up
by becoming part of the conceptual fabric of the discipline. The idea of
‘division by infinity’ as a means of producing vanishingly small quantities
is a case in point where calculus is concerned. For the Nila mathemati-
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cians, coming from a tradition comfortable with decimal numbers (to
which “there is no end”) since two millennia and longer, this was rou-
tine, a transposition of an elementary arithmetical operation to geometry.
To fully appreciate the vital role of decimal numeracy in the genesis of
the Nila calculus, it is enough to look at the struggle European calculus
had with the ab initio notion of an infinitesimal. Newton’s early writings
(the first two volumes of the “Mathematical Papers” [29,30]) are ample
proof of his preoccupation with the question before he settled on the idea
of fluxions, finally giving them, in the Principia, a purely geometric and
quasi-axiomatic formulation.46

When it comes to the geometry, the situation is the reverse. From
its beginnings in the first cord-compass constructions of the Śulbasūtra,
Indian geometry remained circle-bound. The well-documented early his-
tory of European calculus needs no rehashing here except to note that it
too had its beginning in geometry. The geometric culture of 17th century
Europe, descended directly from its Classical antecedents, was however
far wider and deeper than its Indian counterpart of the 14th-15th cen-
turies. The influence of that richness on the genesis of calculus, with
the focus on properties of a much larger class of curves than circles –
maxima and minima, tangents and normals, local curvature, rectifica-
tion and quadrature, etc. – is already evident in the work of Newton’s
predecessors, most notably Fermat.

But of even greater impact was the Cartesian revolution which
came (fortuitously?) at the same time, liberating geometry forever from
the confines of physical space and allowing a precise and quantitative
approach to the study of geometrical objects which challenge an im-
mediate intuitive apprehension, for instance those in dimension higher
than the physical 3 and, in the plane, curves of relatively high degree.
Most significantly, it helped turn calculus into a set of algorithmic rules
which did not require the genius of a Newton or a Mādhava to be put
to productive use.47 Calculus became the study of functions and New-
ton’s fluxion became the derivative in its currently recognisable defini-
tion: f ′(x) := limy→0(f(x+ y)− f(x))/y.

Given their common roots in geometry, we can make a beginning
in understanding what mainly distinguishes the two cultures by saying



BIRTH OF CALCULUS 815

that in India calculus was born from the impact of decimal arithmetical
thinking on geometry while in Europe it was algebra – which itself began
as an extension of arithmetical operations to “affected quantities” – that
was the transformimg agent. For a graphic illustration of what this meant
in practice, we have only to look at Newton’s approach (1669, De Analysi
. . [30]) to the sine series and contrast it with Mādhava’s. He begins
like Mādhava by differentiating the sine and would like to expand the
derivative (1 − sin2)1/2 binomially but does not know how to integrate
the resulting powers of the sine with respect to the angle. So he inverts
the derivative and expands (1− sin2)−1/2. Now he only has to integrate
powers of sine with respect to itself which of course was no problem. But
the result is an infinite series for the angle in powers of its sine and that
is not what he was primarily after:

If it is desired to find the sine from the arc given, of the
equation z = x+ 1

6
x3 + 3

40
x5 + 5

112
x7 · · · found above (z is the

angle and x is its sine), I extract the root, which will be

x = z − 1

6
z3 +

1

120
z5 − 1

5040
z7 +

1

362880
z9 · · ·

Let it be noted here, by the way, that when you know 5 or
6 terms of those roots you will for the most part be able to
prolong them at will by observing analogies.

Newton actually solved algebraically (“extracted the roots”) the equa-
tions resulting from truncation after the first few terms successively be-
fore resorting to “analogies” – “truly a physicist’s proof”.48

A linguistic parallel with the arithmetic/algebra dichotomy would
be to say – since we are speaking of Indian thought – that numbers are
defined by their semantic significance whereas the symbols of algebra are
syntactically defined, taking on whatever meaning we choose to assign
them, subject only to a set of “rules without meaning” (in Frits Staal’s
perceptive phrase [31]) applied mechanically. Divorcing structure from
sense – as algebra does – bestows freedom, freedom to apply the rules
that define the structure without concern for the sense of the objects
to which the rules apply. And from that freedom comes the power of
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abstraction which in turn is the precondition for generalisation. The
amazing growth of mathematics in all its great variety from Descartes’
days to our own is an eloquent testimony to this truism. In the realm
of calculus, the landmarks crossed by the ever widening waves of gener-
alisation already in its classical phase will include, among many others,
calculus in more than one (real) variable and its extension to functions of
complex variables. Subsequently, what was considered geometry was it-
self transformed by calculus, bringing in the greatly more general spaces
of modern differential geometry into its fold. Ever more sophisticated
analytic methods were brought to bear on their investigation, with the
fundamental theorem adapting itself naturally to every changing circum-
stance to become, as of today, Stokes’ theorem in its modern connotation.
D’Alembert’s “métaphysique du calcul” has, in today’s perspective, be-
come the enormously more general statement that calculus is the study
of mathematical objects which can be given a topological structure (so
that ‘vanishingly small’, and more generally the notion of a limit, can
be defined) and a linear structure (for the operation of addition without
which derivatives and integrals cannot be defined).

Nothing remotely resembling the explosive growth of the disci-
pline, even in its premodern phase, say the two hundred years between
Newton and Weierstrass, happened on the banks of the Nila in the two
hundred years separating Mādhava from the definitive decline of the
school he founded. Various reasons, some of them political, can be put
forward for this loss of collective intellectual vigour, but the dominant
cause must be sought internally. Firstly, every single one of the Nila sa-
vants was first an astronomer, and a mathematician only by necessity.49

But more than this ‘applied’ orientation, the general conservatism that
marked Indian intellectual life after the century of enlightenment, the
6th, surely acted as a brake on originality of thought. Mādhava broke
away from the beaten track – as Bhāskara II did not – and that is the
true measure of his stature as one of the greats. But despite that brilliant
legacy and despite also his own exhortations not to be a slave to received
wisdom, what Nı̄lakan. t.ha turned to in his wise old age was the thousand
year old work of Āryabhat.a.

Minimal algebra also meant a lack of interest if not an aversion
to abstraction and generalisation.50 In not one of the main Nila texts is
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there an intimation of the universality of the concepts and methods they
had in hand.51 Apart from this general indifference, it is easy to cite spe-
cific instances of interesting potential generalisations being missed which
to a ‘structural’ mindset would have been obvious. The first is of a cer-
tain historiographic interest since it has been an issue in the ‘calculus or
not?’ debate. Once the sine series was found, its generalisation to the
Taylor series would have required only two easy steps: a recognition that
a circle has no preferred point (“a uniformly round object” as Yuktibhās. ā
characterises a sphere) and the addition formula for the sine ([6]). What
we have instead is the 2nd order interpolation formula of Mādhava which
Śaṅkara extended to higher orders, resulting in a series which is wrong
([7]). A second instance has nothing to do with calculus and is actually
a case of specialisation rather than generalisation but it exemplifies the
same mindset. Yuktibhās. ā has a clear exposition of Brahmagupta’s theo-
rems on cyclic quadrilaterals, in particular one which expresses the area
in terms of its four sides (YB 7.15.1-5). After that comes the correspond-
ing formula for the triangle, obtained not by putting one side equal to 0
but by an independent (and long) geometric proof (YB 7.15.6).

But regret for missed opportunuties should not blind us to the
true achievement of Mādhava. A careful reading of Yuktibhās. ā, with the
eye and the mind open to its many illuminating side remarks, leaves little
room for doubt that that achievement was the formulation of what we
now consider the fundamental principles of calculus. Not only are they
presented and explained with attention to detail and warnings against
pitfalls, but many of the collateral steps in the quick progress of classical
European calculus – and some which came relatively late – were also
anticipated. As a reminder that the motivating force came from the
need to be able to handle curves, here is a final quote from Yuktibhās. ā
(section 7.4.1, after explaining that the use of the linear approximation
for arcs will lead to gross error):

The reason for this: the second arc [is] twofold the initial arc.
... The second chord is not twofold the initial chord, the third
chord is not threefold, and so on. The reason for this: the
initial arc has no curvature [and is] almost equal to the chord
since the śaram (1 − cos) is small. So do not apply the rule
of three (linear proportionality) to the arc because the result
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will be gross (sthūlam).

A fair summing up then would be to say that, lacking the “meta-
physical” breadth that characterised the European response to the same
challenge, all these brilliant insights never broke free from the concrete
and the particular. The fundamental theorem, for instance, remained a
non-issue: it is a dispensable luxury so long as interest is confined to
a handful of problems in which the infinitesimal limit can be handled
case by case. The recognition in Europe of its foundational importance,
already by the pioneers, is in itself a tribute to the universality of their
vision.

It is appropriate to bring this article to a close by taking up briefly
two issues of a historiographic nature mentioned in the introduction.
First, are there any hints of an infinitesimal mode of thinking in the pre-
Nila writings in mathematical astronomy? The case that there are indeed
such indications has most explicitly been made in a recent paper ([27]),
on the basis primarily of methods for finding corrections to planetary
motions attributed to the 9th century astronomer Mujjāla/Mañjula and
Bhāskara II himself. The credibility of the evidence depends on the inter-
pretation of a particular piece of phraseology in their writings, evocatively
rendered in [27] as “instantaneous velocity”, a concept which has a long
and contentious history in Europe going back at least to Aristotle. If this
rendering is correct, these allusions will constitute an anticipation of the
Newtonian view of dynamics as calculus, with position as a function of
the primordial variable, time, and ‘velocity’ as the derivative. The texts
however do not appear to support such a sharp reading.52 In all of the in-
stances cited, the variations of planetary parameters being discussed are
over an interval of time, generally one day. The phrase “instantaneous
velocity” is used as the translation of tātkālika gati; but tatkāla has the
literal (and, in the context, natural) meaning of“that (designated) kāla”
and kāla itself is most commonly used for an interval of time.53 Besides,
the passages make it clear that the corrections discussed refer to changes
over a day, differences rather than differentials.

The same article ([27], section 17) also states that the notion of
a time derivative is present in the writings of Nı̄lakan. t.ha and Acyuta.
On the face of it this is more plausible since the infinitesimal had by
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then become an integral part of Nila thinking. It would also be exciting
since, in addition to the implied acceptance of a non-geometric quantity
like time into the fold of calculus, the functions involved are far from
elementary. But, once again, the passages do not compel a reading going
beyond a finitistic first order correction. The case for a thorough critical
reading of the late Nila astronomical texts continues to remain a strong
one.

The tendency to overinterpret ancient knowledge has always been
a natural occupational hazard for the historian of science, saturated as
his or her mind is with all the progress that has been made since – we
have only to think of Nı̄lakan. t.ha’s reading of Āryabhat.ı̄ya as an hon-
ourable example. Paradoxically, viewing the scientific achievements of
the past from today’s vantage point can also induce the opposite error,
that of undervaluing them by holding them up to the impossibly greater
generality and depth of contemporary science.54 To a certain extent, the
distorting glass of progress may well account for the other point made in
the introduction: why is there a debate about whether the mathematics
that Mādhava created is calculus or not? Part of the answer must be:
sheer incredulity, that the fine flower of classical calculus had already
bloomed in a distant corner of the world some centuries earlier. Partly
it is the reliance by historians on the wrong text, Yuktid̄ıpikā, and the
wrong material from that text, the interpolation formula to which it gives
a great deal of importance55; the linguistic inaccessibility of Yuktibhās. ā
until very recently only compounded the difficulty. But a more funda-
mental reason surely is mystification at the absence of what we consider
the pillars of classical calculus, the fundamental theorem and Taylor’s
theorem for example. We have seen that there is a very good explana-
tion, within the narrow boundaries of the Nila approach to calculus –
they were not needed – for the absence of both, but that emerges only
after a reading of all that is in Yuktibhās. ā.

It is a legitimate goal of the study of sciences of the past to try and
identify when and through what processes a radically new discipline or
subdiscipline took form and established itself as such. A first criterion, of
course, is that it must, by transcending existing modes of thought, enable
the elucidation of hitherto inaccessible questions. But to expect that all
future directions of growth should already have been foreseen at birth
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is both ahistorical and unrealistic. Mādhava has no explicit reference to
the idea of a function and the only curves he studied are those of con-
stant curvature, thus obviating the need to consider derivatives higher
than the second. It is an exaggeration only in degree to compare that
limitation to the impossibility of Newton or Leibniz having envisaged
the great generality of the objects which were later to be brought within
the realm of calculus – we only have to think of the calculus of distri-
butions (which lie beyond the definition of functions) without which, for
example, the theory of partial differential equations will remain incom-
plete and much of modern physics cannot be formulated. What should
be non-negotiable is that the founding principles, in addition to being
original, must also be of such scope and robustness as to support the
edifice that future generations will build on them. These tests the Nila
work passes: what began as elementary calculus with the brilliant idea
of linearising at every point a geometrical object that “has curvature”
is today a discipline whose versatility neither Mādhava nor Newton nor
Leibniz could have visualised. At the end, the historian should rejoice at
the rare opportunity that its invention, in two totally different cultures
but following such similar paths, offers for insights into mathematical
creativity.
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Notes

1They are often more broadly designated as belonging to the Kerala school.
Almost all of them were residents of a cluster of villages in close mutual prox-
imity around the lower reaches of the river Nila. It may therefore be more
appropriate to call the lineage the Nila school as I shall do here, especially
since the beginning of astronomy in Kerala dates back to about six centuries
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earlier with its centre about a hundred kilometers or more to the south of the
Nila.

2Malayalam, the language of Kerala, has a few more syllables compared
to Sanskrit: the palatal r. and l. as consonants (not just semi-vowels) and the
vowels e and o in both the short and long versions. The long vowels are marked
with an overbar: thus Malayāl.am, Kēral.a, Nil.ā. I have indicated the correct
pronunciation of, especially, place names when they occur first, reverting later
to the way they are generally written. The same word can, very occasionally,
have slightly different ‘spellings’ in Malayalam and Sanskrit; readers should not
be confused by the occurrence of both parārddham and parārdha for example.

3The only other purported general survey in existence [2], published more
than seventy years ago, has nothing on geometry in general and on the work
done in Kerala during this period in particular. Geometry is the subject of
Sarasvati Amma’s excellent thesis, later published as the book [3]. It has
thorough descriptions of the infinitesimal geometry of the Nila school and is a
useful complement to [1].

4C. W. Whish in his 1832 presentation of the contents of four texts from
Kerala to the Royal Asiatic Society in London [5] had no such doubts and
states that the power series came out of the same set of ideas, fluxions and
fluents, as they did later for Newton.

5For a first assessment of the calculus credentials of Yuktibhās. ā, see [6].

6A summary account of the evolution of the ideas that culminated in the
calculus of the Nila school will be found in [12].

7Many of these diagrams can also be found elsewhere, e.g., [3]. Virtually all
of them are adaptations of the diagrammatic annotations in the first modern
commentary on Yuktibhās. ā by Rama Varma (Maru) Tampuran and A. R.
Akhilesvara Ayyar [14], published in 1948 and out of print since decades.
Like the original, it is in Malayalam but for those who read the language
it is an invaluable companion, combining traditional insights with a modern
mathematical perspective.

8Among the four works that Whish brought to light in his 1832 lecture ([5])
are Putumana Somayāji’s Karan. paddhati (dated possibly 1732) and Śaṅkara
Varman’s Sadratnamāla (dated 1823). Even though they were well separated
temporally and geographically (possibly in the case of Putumana, definitely
in the case of Śaṅkara Varman) from the heartland of the Nila school, their
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affiliation with it cannot be missed; among other things, Śaṅkara Varman ex-
tended the computation of π to 18 decimal places by using Mādhava’s method
of estimating the truncation correction to the π series.

9There is a mention in Nı̄lakan. t.ha’s Āryabhat.ı̄yabhās.ya of his having spent
his boyhood in a gurukula which Kunjunni Raja ([17]) takes to mean the house
of his teachers Dāmodara and Ravi, sons of Parameśvara.

10Local pronunciation (but not the ‘spelling’) occasionally drops a syllable,
turning it into ‘Alatyur’ or ‘Alattur’. This may account for the place being
referred to as ‘Ālattūr’ by K. V. Sarma in all his writings. There is a much
bigger town named Alattur in central Kerala, about a 100 km to the east of
Tirunavaya, but as far as anyone knows it has no connection to the Nila school.

11Another possibility is that sam. gama refers to the confluence of the Nila
with the sea. Parameśvara refers more than once to his home being on the
Nila and on the shore of the ocean, even using the word sam. gama to describe
its location. He also says that he is from Aśvatthagrāma, which is generally
believed to be the Sanskritisation of Alathiyur. The problem is that Alathiyur
lies a few kilometers away from both the river and the sea.

12But not into the 17th as suggested by Sarma following some hearsay gath-
ered long ago by Whish ([15,16]), to the effect that Jyes.t.hadeva was also the
author of a narrative work Dr.kkaran. a dated 1607. Apart from the problem of
stretching the dates, there are linguistic difficulties with the suggested identi-
fication ([6]). It is an amusing thought that there is a solution to the problem
of fitting the lifetimes of the chief figures to everything that has survived in
the oral tradition: all of them were centenarians.

13To confuse the issue further: The critical Malayalam edition of Yuktibhās. ā
[14] has a foreword by the well known traditional scholar P. Shridhara Menon
in which it is said that the true name of Jyes.t.hadeva is Brahmadatta on
the strength of a quotation “alekhi yuktibhās. ā vipren. a brahmadattasam. jñena”
from a copy of the manuscript. It is true that Brahmadatta (like the names
of all the other Nila astronomers) is and was a common proper name among
Namputiris while Jyes.t.hadeva is extremely rare if not unique to our author.
But Kunjunni Raja ([17]) has argued that Brahmadatta was the name of the
scribe who made the copy. The mystery of the name remains.

14There is not, and has not been for a long time, a Namputiri house with
a name approximating Parangod in the region. In Kerala, and especially
in Malabar, a ‘house name’ functions as a family name; it disappears for
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good only when a family becomes extinct which is rare but does happen (as
presumably in the case of Nı̄lakan. t.ha, his natal house Kelallur mana becoming
Eta mana).

15This point is of some relevance to the poorly understood reasons for the
decline of the Nila school. That education was reserved for the brahmins
cannot be the whole story because, already by the 13th or 14th centuries, in
Kerala it was not. While on the subject it is useful to keep in mind that
Nampūtiri is a generic term for brahmins (which they often appended to their
personal names) who migrated to Kerala beginning around the 7th-8th cen-
turies CE along the coast from the north. Names like Bhat.t.atiri, Somayāji,
etc. are titles bestowed on Nampūtiris with special skills or achievements not,
at the time of interest to us, automatically passed on to the next generation.
Emprāntiri as in the case of Mādhava refers to the origin of the family without
necessarily implying social inferiority.

16There is the instance of a combinatorial formula first presented in Nārāyan. a’s
Gan. itakaumudi (mid-14th century) whose asymptotic form gives the coeffi-
cients of the sine series and which is mentioned by both Jyes.t.hadeva and
Śaṅkara without reference to either Nārāyan. a or anyone else. It is also not
known where Nārāyan. a lived.

17The last but one verse of Āryabhat.ı̄ya (Golapāda 49) speaks of “the best
of gems that is true knowledge brought up by me from the ocean of true and
false knowledge by [means of] the boat of my own intelligence”.

18K. V. Sarma ([18]) speaks with feeling about his encounter with a ghost
manuscript supposedly titled Golavāda, “The Theory of the Sphere”. (Mādhava
was often referred to as Golavid).

19Yuktibhās. ā comes in two parts, with all the mathematics collected together
in Part I. Part II describes the astronomical applications. Only Part I is of
interest in this article.

20See M. D. Srinivas’s epilogue (“Proofs in Indian Mathematics”) to [1].
These principles were not set down once and for all, but subject to constant
reinvestigation. A reading of Nı̄lakan. t.ha’s Siddhāntadarpan. a (and his own
commentary on it) and Jyotirmı̄mām. sa will provide convincing evidence of the
importance given to such epistemological issues and their continuing reevalu-
ation. By the end of this article it should become clear, hopefully, that within
this framework the logical structure of the proofs is sounder than in Newton’s
treatment of some of the very same problems.
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21There are some originalities here, meant mainly to prepare the ground
for some of the algebraic (operations with polynomials, rational functions and
infinite series) and logical (inductive proofs) innovations that are taken up
later. These matters, though not strictly ‘calculus’, provide indispensable
technical support for its formulation and applications.

22The concluding sections of chapter 6 are not specifically ‘infinitesimal’ in
nature and will get no further notice here. But they mark the first steps in
what might have become a new algebraic direction. These developments are
touched upon in [7] and will be described in greater detail in [21].

23It seems agreed that this is how Āryabhat.a obtained his approximate π
but starting with the inscribed hexagon rather than the circumscribing square.

24Throughout this paper, [YB N.n] will denote section n of chapter N of [4].
Subsection n′ when referred to will be denoted [YB N.n.n′].

25It is immediately evident that by integrating up to some t < 1 but follow-
ing exactly the same steps the general arctangent series results. Yuktibhās. ā
does something very similar but formulated more geometrically (using similar
triangles, not surprisingly) to get to the same end. I shall not distinguish
between the general and the special cases in what follows. No confusion will
arise.

26The term used in Yuktibhās. ā is cāp̄ıkaran. am, accurately though infelici-
tously translated as ‘arcification’. Statements like “The trigonometric power
series of e.g., Gregory and Leibniz seem to have grown out of earlier calculus
topics such as . . tangents and normals, . ., and quadratures and rectifications
in general which apparently do not figure in these Keralese explorations of the
relationships between straight lines and arcs of a circle” [20] are therefore too
sweeping. What is true is that the Nila school, unlike Europe with its an-
choring in the Greek geometry of conic sections, did not consider curves other
than the circle. Their astronomy did not require them to.

27Or perhaps Jyes.t.hadeva had in mind something deeper which he explains
later in the chapter (Yuktibhās. ā 6.5 and 6.6): the need to ensure that terms
in the series must have the numerator (sin θ) smaller than the denominator
(cos θ). This condition is not met in the second octant.

28Associating to an arc half the chord of twice that arc – which from now
on I will call simply the half-chord of the arc in line with the Indian custom
(ardhajyā in Sanskrit, arddhajyā as it is written in Malayalam, or jyārdha) –



BIRTH OF CALCULUS 825

i.e., mapping θ to sin θ, is the founding step of Āryabhat.a’s trigonometry. As
θ tends to 0, the half-chord and the full chord of θ, which is 2 sin(θ/2), tend
to one another. For results in the limit, it does not matter which of these two
choices is made but for the latter choice Yuktibhās. ā’s geometry will have to be
redone in a more cumbersome manner.

29Indian geometers paid no attention to the general idea of tangency proba-
bly because the only conic section they were concerned with was the circle: the
tangent to a circular arc at a point is the perpendicular to the radius through
that point. But that does not change the fact that determining the differential
is the same as finding the slope of the tangent, whether Jyes.t.hadeva knew it
as such or not. Once again, the contrast with Greek geometry is sharp.

30The binomial expansion for any but positive integral exponents (where
it is finite) seems to be unknown in Indian mathematics despite occasional
evocation of the term by modern historians. The general method of recursive
refining turns up in many earlier contexts but in the work of the Nila school
it acquires a remarkable degree of precision and power ([7]). In particular, the
idea of carrying out the refining ad infinitum in order to get exact answers
represented by infinite series appears to be another of the Nila innovations.
For the geometric series occurring here, the result coincides with the binomial
expansion.

31An obvious point but worth noting is that ‘discrete integration by parts’
does not translate as the ‘discrete Leibniz property’: δ(aibi) is not aiδbi+biδai
but has an extra second order term δaiδbi which vanishes in the limit. Yuk-
tibhās. ā has no use for the discrete Leibniz property. It is interesting that
Leibniz, whose path to calculus was guided strongly by the discrete funda-
mental theorem (see for example the writings of H. J. M. Bos, in particular
[22]), formulated the property named for him wrongly in his first try.

32This is one of the reasons for suggesting that Yuktibhās. ā, at least the first
part, may have been composed in the early 1520s – by 1530, Nı̄lakan. t.ha would
have been 85 years old (about the same age at which Sarma finished [4]; so
the suggestion need not be taken too seriously).

33Section 7.2.2 on basic trigonometry already concludes with the observation
that, starting with the angle π/4 and halving it successively, “some” of the
sines in the table can be determined. In fact all of them can be found by
starting with sinπ/6 and sinπ/4, halving the angles successively and utilising
the symmetries. As far as the limited aim of making the table is concerned,
section 7.4.2 is thus superfluous.
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34For an appreciation of the originality of the mathematics involved, see
Mumford’s review of Plofker’s book [9].

35Particularly striking is the fact that, of the two complementary functions
sin and cos, the difference of one is linear in the value of the other at the
midpoint. The general result sin(θ + φ) − sin(θ − φ) = 2 sinφ cos θ follows
easily from the addition theorem though proofs of the latter are geometrically
more demanding and are attributed to Mādhava. The geometry of the finite
difference formula served Nı̄lakan. t.ha as the starting point of his exact treat-
ment in Āryabhat.ı̄yabhās.ya of the sine table, see [24]. Yuktibhās. ā exploits the
close connection between the addition formula and the derivative later in the
text in an alternative approach to the differential part of the sine series. But
it does not use the exact first-difference equations, as Nı̄lakan. t.ha does, in its
treatment of the sine table. This is the second instance, the first being the
irrationality of π, of Jyes.t.hadeva passing over without mention insights found
in Āryabhat.ı̄yabhās.ya but not in Tantrasam. graha.

36Compare Leibniz ([22]).

37Actually the solvability is not so amazing since we have a set of linear
equations for the unknowns s4, · · · , s2n in terms of s1 and s2. What is remark-
able is the method of solution.

38The formula is cited in Yuktibhās. ā without attribution or proof. This is
only the second instance in the book of an important result being used with
no proof provided. The formula is restated in Śaṅkara’s Kriyākramakar̄ı but
he too refrains from proving it because “the yukti is not easy to follow”. The
only proof I am aware of uses induction on both i and k ([7]).

39The method of recursive substitution employed here is probably the most
sophisticated instance of a very general technique that comes in many vari-
ants (see [7]), that of successive ‘refining’ or sam. skāram. My highly condensed
account of how it is used in the solution of the discrete harmonic equation
(though it is not directly ‘infinitesimal’ in content), taking advantage of mod-
ern notational flexibility, is meant to convey the algebraic ingenuity involved
and the meticulousness with which details of mathematical reasoning are han-
dled. It is also not fully faithful to the original sequencing of the argument;
Yuktibhās. ā, as is its style, starts by determining the first two terms in the
expansion, then builds up the next higher terms and finally describes the
combinatorial formula for the general coefficient. A more detailed annotation
respecting Yuktibhās. ā’s own order and manner of presentation will be found
in [7].
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40This is not the method by which Newton discovered the series that goes
under his name (see section 8). Nor is it the method commonly found in to-
day’s textbooks. Indeed, in Europe the idea of turning differential equations
into integral equations came in the 19th century, much after Taylor’s theo-
rem and the extension of the calculus of the exponential function to complex
arguments (the two most popular approaches to the sine series).

41This term, used just this once in the whole text, comes nearest to a literal
translation of ‘infinitesimal’.

42The suggestion was made by John Playfair ([25]) a long time ago from the
description of the sine table in Sūryasiddhānta. Āryabhat.ı̄ya itself seems to
have been unknown in Europe or America before Kern’s edition was published
in 1874. Burgess in his edition of Sūryasiddhānta (1860) translated the number
as.t.aśata in the other name by which Āryabhat.ı̄ya was known, Āryās. t.aśata (for
the 108 verses in the 3 substantive chapters in the meter āryā), wrongly as
800, as did Colebrooke earlier.

43Trigonometric ratios were invariably scaled to a standard length in In-
dia by multiplying by the radius of the ‘unit’ circle of circumference 360o =
21, 600′, namely R = 21, 600′/2π = 3438′ using Āryabhat.a’s value for 2π; thus
the terminlogy Rsine for the half-chord (jyārdha) etc. used by modern writ-
ers. The required division by 2π (and the universal avoidance of a decimal
fractional notation in India) may very well be the reason for Āryabhat.a citing
a value for π with reference to a diameter of 20,000 rather than 10,000.

44My italics. It is ironic that this appeal to physics, so very rare in Indian
astronomy, should be such an absurdity.

45The 7th century probably saw a reaction from the orthodox to the radi-
cally new thinking of the century of enlightenment, the 6th (Āryabhat.a him-
self, Vāgbhat.a the physician, Bhartr.hari the linguist-philosopher). There is
no need here to recall the vicious attacks on Āryabhat.a by Bhāskara I’s con-
temporary Brahmagupta, generally but not always on doctrinal grounds. The
most notorious instance of this relapse into faith-based knowledge was the
suppression soon after, by resorting to fraudulent rewriting, of Āryabhat.a’s
idea of the spinning earth. Fortunately the revisionists did their work par-
tially and unintelligently, leaving enough trails to Āryabhat.a’s true views for
the unbiassed future reader (one of whom may well have been Nı̄lakan. t.ha) to
follow.

46Newton writes in a slightly later tract (see [23]) of “the doctrine recently



828 INDIAN JOURNAL OF HISTORY OF SCIENCE

established for decimal numbers”. (For the full quote and its context, see [7]).
Could it be that unfamiliarity with the “doctrine” came in the way of Europe
adopting this most natural way of dealing with vanishingly small (śūnyaprāya,
of the nature of zero, in Yuktibhās. ā’s accurate phrase) quantities? Newton uses
decimal arithmetic as a model for the manipulation of infinite series.

47To read Newton’s earliest notes on calculus (for example “Calculus Be-
comes an Algorithm” in [29], written in 1663, before the outbreak of the
plague) with an eye attuned to Yuktibhās. ā is to marvel, first at the facility
with which it moves between curves and their equations, but also at the great
variety of curves/equations considered.

48David Mumford’s phrase, personal communication.

49Nevertheless, the practical demands of astronomy were often trumped by
the delight of pursuing mathematics for its own sake. How else to account for a
value of π to 11 decimal places, an accuracy far beyond the needs of astronomy?
Likewise, there was no astronomical compulsion for the sine series since the
sine table augmented by Mādhava’s interpolation formula did the job to the
required precision with less labour. The calculus of the area and volume of the
sphere makes an even better case as they have no role to play in astronomical
calculations at all.

50From Brahmagupta until Bhāskara II and later, Indian algebra remained a
sort of arithmetic in reverse, a mere means of setting up and solving equations
for temporarily undetermined numbers. We can just about begin to glimpse
a more abstract algebraic point of view emerging in Yuktibhās. ā’s treatment of
polynomials and rational functions.

51Faith in the power of abstraction seems to have been another casualty
of the return to conservatism in the 7th century. Even before Pān. ini (6th-
5th century BCE) formally introduced (syntactical) metarules in the study
of language, there is very good evidence from the Vedas that the sciences of
grammar and numbers developed in tandem, the rules governing each influ-
encing the other ([11]). Indeed, it may well be that the first appearance of
syntactical “rules without meaning” is (probably) slightly earlier, in the or-
ganisation of vedic rituals ([31]). For an eloquent endorsement, much later, by
Patañjali (3rd-2nd century BCE) of abstract rule-based methods in the study
of language, see [31] (reproduced in [7]). Historically, the last tribute we have
to the symbiosis between numbers and words is from the 6th century (CE)
linguist-philosopher Bhartr.hari (see [11]).
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52The article [27] (section 6) has a number of quotations from Bhāskara’s
Siddhāntaśiroman. i (which incidentally is also the source of the formulae for
the sphere) with English translations.

53The more precise word for ‘instant’ is ks.an. a which in fact occurs in one
passage but not as a qualifier of “velocity”. For the record I add that tātkālika
gati as an unbroken phrase does not actually occur in any of these passages.

54There are other occupational hazards. In the preface to his edition of
Āryabhat.ı̄ya (1874), Kern writes (about the astronomer Sūryadeva): “. .
after the great Bhāskara [II], in an age when the living breath of science had
already parted from India” ([32]). This while he was in possession of Whish’s
collection which included a copy of Tantrasam. graha and 40 years after Whish’s
London lecture.

55I have discussed this point elsewhere ([7]). The infinitely iterated interpo-
lation formula has about as much to do with calculus as an infinite geometric
series has. On the whole, it is difficult to escape the feeling that Śaṅkara,
for all his brilliance, was less sensitive to what was truly deep in the work of
Mādhava than was Jyes.t.hadeva.

References

[1] Kim Plofker, Mathematics in India, Princeton University Press, Prince-
ton (2008).

[2] Bibhutibhushan Datta and Avadhesh Narayan Singh, History of Hindu
Mathematics, Bharatiya Kala Prakashan, Delhi (Reprint, 2001).

[3] T. A. Sarasvati Amma, Geometry in Ancient and Medieval India, Motilal
Banarsidass Publishers, Delhi (1979).
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