GENERALIZED BROWDER-TYPE FIXED POINT THEOREM WITH STRONGLY GEODESIC CONVEXITY ON HADAMARD MANIFOLDS WITH APPLICATIONS

Zhe Yang* and Yong Jian Pu**

*School of Economics and Trade, Chongqing Technology and Business University, Chong Qing, 400067, P.R. China
**College of Economics and Business Administration, Chongqing University, Chong Qing, 400044, P.R. China
e-mail: zheyang211@163.com

(Received 14 August 2011; accepted 10 February 2012)

In this paper, a generalized Browder-type fixed point theorem on Hadamard manifolds is introduced, which can be regarded as a generalization of the Browder-type fixed point theorem for the set-valued mapping on an Euclidean space to a Hadamard manifold. As applications, a maximal element theorem, a section theorem, a Ky Fan-type Minimax Inequality and an existence theorem of Nash equilibrium for non-cooperative games on Hadamard manifolds are established.

Key words: Generalized Browder-type fixed point theorem, Maximal element theorem, Hadamard manifolds, Ky Fan Minimax Inequality, Section theorem, Nash equilibrium.

1Supported by ChongQing University Postgraduates, Science and Innovation Fund, Project Number: 200911B0A0050321.
1. Introduction

In 1961, [7] established an elementary but very basic geometric lemma for multivalued mappings by the mean of his own generalization of the classical Knaster-Kuratowski-Mazurkievicz theorem [2, 3] used this fact to prove the Fan-Browder fixed-point theorem, which is a more convenient form of Fan’s lemma. Later, by establishing the existence of selection functions for set-valued mappings with open fibers in product spaces, Deguire and Lassonde gave some fixed-point theorems in product spaces for both compact and non-compact domains (see [6]). Readers may consult [1, 5, 8, 9, 11, 13].

On the other hand, in the last few years, several important concepts of nonlinear analysis have been extended from an Euclidean space to a Riemannian manifold setting in order to go further in the study of the convexity theory, the fixed point theory, the variational inequality and related topics. In fact, a manifold is not a linear space. In this setting the linear space is replaced by a Hadamard manifold and the line segment by a geodesic in [14,16,17]. In 2003, [12] introduced and studied the variational inequality on Hadamard manifolds. Some existence theorems of solutions for the variational inequality are proved in [10].

Motivated and inspired by the research works mentioned above, in this paper, we are interested in investigating generalized Browder-type fixed point theorems on Hadamard manifolds. As applications, some existence results of solutions for maximal element theorems, section theorems, a Ky Fan-type Minimax Inequality and non-cooperative games on Hadamard manifolds are obtained.

2. Preliminaries

First we recall some definitions in [4,12]. Let \((M, g)\) be a complete finite-dimensional Riemannian manifold with the Levi-Civita connection \(\nabla\) on \(M\). Let \(x \in M\) and let \(T_xM\) denote the tangent space at \(x\) to \(M\). We denote by \(\langle \cdot, \cdot \rangle_x\) the scalar product on \(T_xM\) with the associated norm \(\| \cdot \|_x\), where the subscript \(x\) is sometimes omitted. For \(x, y \in M\), let \(c : [0, 1] \longrightarrow M\) be a piecewise smooth curve joining \(x\) to \(y\). Then the arc-length of \(c\) is defined by \(l(c) = \int_0^1 \| \dot{c}(t) \| dt\), while the Riemannian
distance from x to y is defined by $d(x, y) := \inf_c l(c)$, where the infimum is taken over all piecewise smooth curves $c : [0, 1] \to M$ joining x to y. Recall that a curve $c : [0, 1] \to M$ joining x to y is a geodesic if $c(0) = x$, $c(1) = y$ and $\nabla_c \dot{c} = 0$, $\forall t \in [0, 1]$. A geodesic $c : [0, 1] \to M$ joining x to y is minimal if its arc-length equals its Riemannian distance between x and y. By the Hopf-Rinow Theorem (see [4]), if M is additionally connected, then (M, d) is a complete metric space, and there is at least one minimal geodesic joining x to y. Moreover, the exponential map at x, $\exp_x : T_x M \to M$ is well-defined on $T_x M$. Clearly, a curve $c : [0, 1] \to M$ is a minimal geodesic joining x to y if and only if there exists a vector $v \in T_x M$ such that $\|v\| = d(x, y)$ and $c(t) = \exp_x (t v)$ for each $t \in [0, 1]$.

Definition 2.1 — A Hadamard manifold M is a simply-connected complete Riemannian manifold of non-positive sectional curvature.

Throughout the remainder of the paper, we always assume that M is a m-dimensional Hadamard manifold. The following result is well-known and will be useful.

Proposition 2.1 [15] — Let $x \in M$. Then, $\exp_x : T_x M \to M$ is a diffeomorphism, and for any two points $x, y \in M$, there exists a unique normal geodesic joining x to y, which is in fact a minimizing geodesic.

A curve $c : [0, 1] \to M$ is a minimal geodesic joining x to y, then $c(1) = \exp_x v = y$. By Proposition 2.1, we have $\exp_x^{-1}(y) = v$. Thus $c(t) = \exp_x (t \exp_x^{-1} y)$. The geodesic connecting two points is unique on Hadamard manifold, so just say it geodesic but not necessarily minimal geodesic.

Remark 2.1 : (i) The exponential mapping and its inverse are continuous on Hadamard manifolds; (ii) For any $p, q \in M$, the geodesic joining p to q is $\exp_p (t \exp_p^{-1} q)$ for $t \in [0, 1]$.

In [12], geodesic convexity is introduced by Nemeth.

Definition 2.2 [12] — A set $K \subset M$ is said to be geodesic convex if, for any
In this paper, we introduce strongly geodesic convexity on Hadamard manifolds.

Definition 2.3 — A set \(K \subset M \) is said to be strongly geodesic convex if, for any given \(o \in M \) and for any \(p, q \in K \), \(\exp_o((1-t)\exp_o^{-1}p + t\exp_o^{-1}q) \in K \) for all \(t \in [0,1] \).

Remark 2.2 : When \(o = p \in K \) and \(q \in K \),
\[
\exp_o((1-t)\exp_o^{-1}p + t\exp_o^{-1}q) = \exp_p(t\exp_p^{-1}q).
\]

Hence we have

\[
\text{strongly geodesic convexity} \Rightarrow \text{geodesic convexity}.
\]

Lemma 2.1 — \(K \subset M \) is strongly geodesic convex if and only if, for any given \(o \in M \) and for any finite \(\{x_1, \cdots, x_n\} \subset K \), \(\lambda_1, \cdots, \lambda_n \in [0,1] \) with \(\sum_{i=1}^{n} \lambda_i = 1 \), we have \(\exp_o\left(\sum_{i=1}^{n} \lambda_i \exp_o^{-1}x_i\right) \in K \).

Proof : It is enough to prove \(\Rightarrow \), because \(\Leftarrow \) is trivial. We use mathematical induction. When \(n = 1,2 \), the statement is true. Suppose that it is true for some \(n \), we only prove that \(\exp_o\left(\sum_{i=1}^{n+1} \lambda_i \exp_o^{-1}x_i\right) \in K \) for any finite \(\{x_1, \cdots, x_{n+1}\} \subset K \), \(\lambda_1, \cdots, \lambda_{n+1} \in [0,1] \) with \(\sum_{i=1}^{n+1} \lambda_i = 1 \). Without loss of generality, we can assume that \(0 < \lambda_{n+1} < 1 \). Thus,
\[
\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} = 1.
\]

Since it is true for \(n \), then
\[
y := \exp_o\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} \exp_o^{-1}x_i\right) \in K.
\]
Hence, we have
\[
\exp_o(\lambda_{n+1} \exp_o^{-1}x_{n+1} + (1 - \lambda_{n+1}) \exp_o^{-1}y) \in K.
\]
Since
\[
\exp_o(\lambda_{n+1} \exp^{-1}_o x_{n+1} + (1 - \lambda_{n+1}) \exp^{-1}_o y) = \exp_o \left(\lambda_{n+1} \exp^{-1}_o x_{n+1} + \sum_{i=1}^{n} \exp^{-1}_o x_i \right),
\]
then
\[
\exp_o \left(\sum_{i=1}^{n+1} \lambda_i \exp^{-1}_o x_i \right) \in K.
\]
This completes the proof.

Definition 2.4 — A set \(S \subset M \), the smallest strongly geodesic convex set containing \(S \) is defined by \(Gco(S) \), called strongly geodesic convex hull of \(S \).

Next, the representation theorem of strongly geodesic convex hull is given.

Lemma 2.2 — Let \(S \subset M \), and \(o \) be any given point in \(M \).

\[
Gco(S) = \left\{ \exp_o \left(\sum_{i=1}^{n} \lambda_i \exp^{-1}_o x_i \right) : \forall x_1, \cdots, x_n \in S; \lambda_1, \cdots, \lambda_n \in [0, 1], \sum_{i=1}^{n} \lambda_i = 1 \right\}.
\]

Proof : Denote

\[
D = \left\{ \exp_o \left(\sum_{i=1}^{n} \lambda_i \exp^{-1}_o x_i \right) : \forall x_1, \cdots, x_n \in S; \lambda_1, \cdots, \lambda_n \in [0, 1], \sum_{i=1}^{n} \lambda_i = 1 \right\}.
\]

(I) We prove \(D \subset Gco(S) \).

For any finite \(\{x_1, \cdots, x_n\} \subset S \subset Gco(S) \), \(\lambda_1, \cdots, \lambda_n \in [0, 1] \) with \(\sum_{i=1}^{n+1} \lambda_i = 1 \), since \(Gco(S) \) is strongly geodesic convex by the definition 2.4, then, by lemma 2.1,

\[
\exp_o \left(\sum_{i=1}^{n} \lambda_i \exp^{-1}_o x_i \right) \in Gco(S).
\]
Thus $D \subset Gco(S)$.

(II) We prove $Gco(S) \subset D$.

For any $x, y \in D$, there exist m_1, m_2, finite $\{x_1, \cdots, x_{m_1}\} \subset S$, $\lambda_1, \cdots, \lambda_{m_1} \in [0, 1]$ with $\sum_{i=1}^{m_1} \lambda_i = 1$, and finite $\{y_1, \cdots, y_{m_2}\} \subset S$, $\mu_1, \cdots, \mu_{m_2} \in [0, 1]$ with $\sum_{i=1}^{m_2} \mu_i = 1$ such that

$$x = \exp_o \left(\sum_{i=1}^{m_1} \lambda_i \exp_o^{-1} x_i \right), \quad y = \exp_o \left(\sum_{i=1}^{m_2} \mu_i \exp_o^{-1} y_i \right).$$

Hence, for any $t \in [0, 1]$, we have

$$\exp_o (t \exp_o^{-1} x + (1 - t) \exp_o^{-1} y) = \exp_o \left(\sum_{i=1}^{m_1} t \lambda_i \exp_o^{-1} x_i + \sum_{i=1}^{m_2} (1 - t) \mu_i \exp_o^{-1} y_i \right).$$

Since

$$\sum_{i=1}^{m_1} t \lambda_i + \sum_{i=1}^{m_2} (1 - t) \mu_i = 1,$$

then

$$\exp_o (t \exp_o^{-1} x + (1 - t) \exp_o^{-1} y) \in D.$$

Thus D is strongly geodesic convex. Since $S \subset D$, then $Gco(S) \subset D$ by the definition 2.3.

This completes the proof.

We also need the following result, which are due to Nemeth [12].

Lemma 2.3 [12] — If $K \subset M$ is nonempty, compact and geodesic convex, then every continuous function $f : K \rightarrow K$ has a fixed point.

By Remark 2.2, we have:
Lemma 2.4 — If $K \subset M$ is nonempty, compact and strongly geodesic convex, then every continuous function $f : K \rightarrow K$ has a fixed point.

Definition 2.5 — Let X and Y be two Hausdorff topological spaces, and $F : X \rightrightarrows Y$ be a set-valued mapping,

(1) If, for any open subset O of Y with $O \supset F(x)$, there exists an open neighborhood $U(x)$ of x such that $O \supset F(x')$ for any $x' \in U(x)$, F is said to be upper semicontinuous at $x \in X$;

(2) If F is upper semicontinuous on each $x \in X$, F is said to be upper semicontinuous on X;

(3) If, for any open subset O of Y with $O \cap F(x) \neq \emptyset$, there exists an open neighborhood $U(x)$ of x such that $O \cap F(x') \neq \emptyset$ for any $x' \in U(x)$, F is said to be lower semicontinuous at $x \in X$;

(4) If F is lower semicontinuous on each $x \in X$, F is said to be lower semicontinuous on X;

(5) for any $y \in Y$, $F^{-1}(y) := \{x \in X | y \in F(x)\}$.

3. Main Results

Throughout this paper, let M be a Hadamard manifold, X be a nonempty, strongly geodesic convex and compact subset of a Hadamard manifold M and o be any given point in M.

Theorem 3.1 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $F : X \rightrightarrows X$ and $H : X \rightrightarrows X$ are two set-valued mappings with the following conditions:

(1) for any $x \in X$, $GcoH(x) \subset F(x)$;

(2) for any $x \in X$, there exists $y \in X$ such that $x \in intH^{-1}(y)$;

Then there exists $x^* \in X$ such that $x^* \in F(x^*)$.
PROOF: By condition (2), we have

$$X = \bigcup_{y \in X} \text{int} H^{-1}(y).$$

Since X is nonempty and compact, there exists a finite number of $\text{int} H^{-1}(y_1), \ldots, \text{int} H^{-1}(y_n)$ such that

$$X = \bigcup_{i=1}^{n} \text{int} H^{-1}(y_i).$$

Let $\{\alpha_i|i = 1, \cdots, n\}$ be the partition of unity subordinate to open covering $\{\text{int} H^{-1}(y_i)|i = 1, \cdots, n\}$ of X, i.e.,

$$0 \leq \alpha_i(x) \leq 1, \quad \sum_{i=1}^{n} \alpha_i(x) = 1, \forall x \in X, i = 1, \cdots, n;$$

and if $x \not\in \text{int} H^{-1}(y_j)$ for some j, then $\alpha_j(x) = 0$.

Now we consider a function $f : X \rightarrow X$, defined by

$$f(x) = \exp_o(\alpha_1(x) \exp_o^{-1} y_1 + \cdots + \alpha_n(x) \exp_o^{-1} y_n), \forall x \in X.$$

Then f is continuous, and by Lemma 2.4, there exists $x^* \in X$ such that $f(x^*) = x^*$.

Let $I = \{i \in \{1, \cdots, n\} | \alpha_i(x^*) > 0\}$, then $\sum_{i \in I} \alpha_i(x^*) = 1$ and $x^* \in \text{int} H^{-1}(y_i) \subset H^{-1}(y_i)$ for all $i \in I$, i.e., $y_i \in H(x^*)$ for each $i \in I$. Thus, we have

$$x^* = f(x^*) = \exp_o \left(\sum_{i \in I} \alpha_i(x^*) \exp_o^{-1} y_i \right) \in \text{Gco} H(x^*) \subset F(x^*).$$

This completes the proof.

Remark 3.1: If $H^{-1}(y)$ is open in X for each $y \in X$ and $H(x) \neq \emptyset$ for all $x \in X$, then, for any $x \in X$, there exists $y \in X$ such that $y \in H(x)$, i.e., $x \in H^{-1}(y) = \text{int} H^{-1}(y)$. The condition (2) of theorem 3.1 is obtained. Thus we have the following corollary:
Corollary 3.1 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $F : X \rightrightarrows X$ and $H : X \rightrightarrows X$ are two set-valued mappings with the following conditions:

1. for any $x \in X$, $GcoH(x) \subset F(x)$;
2. for any $y \in X$, $H^{-1}(y)$ is open in X;
3. $H(x) \neq \emptyset$ for all $x \in X$.

Then there exists $x^* \in X$ such that $x^* \in F(x^*)$.

When $H(x) = F(x)$ for all $x \in X$, we have the following corollary, which can be regarded as the Fan-Browder fixed point theorem on Hadamard manifolds.

Corollary 3.2 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $F : X \rightrightarrows X$ is a set-valued mapping with the following conditions:

1. for any $x \in X$, $F(x)$ is nonempty and strongly geodesic convex in X;
2. for any $y \in X$, $F^{-1}(y)$ is open in X.

Then there exists $x^* \in X$ such that $x^* \in F(x^*)$.

Next we give a maximal element theorem on Hadamard manifolds by theorem 3.1.

Theorem 3.2 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $A : X \rightrightarrows X$ and $B : X \rightrightarrows X$ are two set-valued mappings with the following conditions:

1. For each $x \in X$, $x \notin GcoB(x)$.
2. If $A(x) \neq \emptyset$, then there exists $y \in X$ such that $x \in intB^{-1}(y)$.

Then there exists $x^* \in X$ such that $A(x^*) = \emptyset$.

PROOF: Suppose the contrary, then $A(x) \neq \emptyset$ for all $x \in X$. By Theorem 3.1,
there exists $x^* \in X$ such that $x^* \in GcoB(x^*)$, which contradict the fact that $x \not\in GcoB(x)$ for each $x \in X$. This completes the proof.

Remark 3.2 : If $A(x) \subset B(x)$ for each $x \in X$, and $A(x) \neq \emptyset$, then there exists $y \in X$ such that $y \in A(x) \subset B(x)$. Thus $x \in B^{-1}(y)$. We have the following corollary:

Corollary 3.3 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $A : X \rightrightarrows X$ and $B : X \rightrightarrows X$ are two set-valued mappings with the following conditions:

(1) For each $x \in X$, $A(x) \subset B(x)$.

(2) For each $x \in X$, $x \not\in GcoB(x)$.

(3) For each $y \in X$, $B^{-1}(y)$ is open in X.

Then there exists $x^* \in X$ such that $A(x^*) = \emptyset$.

In the case when $A = B$, Corollary 3.3 become the following result:

Corollary 3.4 — Let X be a nonempty, strongly geodesic convex and compact subset of M. Suppose that $A : X \rightrightarrows X$ is a set-valued mapping with the following conditions:

(1) For each $x \in X$, $x \not\in GcoA(x)$.

(2) For each $y \in X$, $A^{-1}(y) = \{x \in X | y \in A(x)\}$ is open in X.

Then there exists $x^* \in X$ such that $A(x^*) = \emptyset$.

Next we prove a new section theorem on Hadamard manifolds by theorem 3.1.

Theorem 3.3 — For each $i = 1, \cdots, n$, let X_i be a nonempty, strongly geodesic convex and compact subset of a Hadamard manifold M_i. Let

$$X = \prod_{i=1}^{n} X_i, \quad X_{-i} = \prod_{1 \leq j \leq n, j \neq i} X_j.$$
Let \(A_1, \cdots, A_n \) and \(B_1, \cdots, B_n \) be \(2n \) subsets of \(X \),

\[
A_i(x_i) = \{ x_{-i} \in X_{-i} | (x_i, x_{-i}) \in A_i \}, \quad A_i(x_{-i}) = \{ x_i \in X_i | (x_i, x_{-i}) \in A_i \},
\]

\[
B_i(x_i) = \{ x_{-i} \in X_{-i} | (x_i, x_{-i}) \in B_i \}, \quad B_i(x_{-i}) = \{ x_i \in X_i | (x_i, x_{-i}) \in B_i \}
\]

such that

1. For each \(i = 1, \cdots, n \), and any \(x_{-i} \in X_{-i} \), there exists \(y_i \in X_i \) such that \(x_{-i} \in \text{int} B_i(y_i) \);
2. For each \(i = 1, \cdots, n \), and any \(x_{-i} \in X_{-i} \), \(GcoB_i(x_{-i}) \subset A_i(x_{-i}) \).

Then

\[
\bigcap_{i=1}^{n} A_i \neq \emptyset.
\]

Proof: We define set-valued mappings \(F : X \rightrightarrows X \) and \(H : X \rightrightarrows X \) by

\[
F(x) = \prod_{i=1}^{n} F_i(x_{-i}), \quad H(x) = \prod_{i=1}^{n} H_i(x_{-i}),
\]

where

\[
F_i(x_{-i}) = \{ y_i \in X_i | (y_i, x_{-i}) \in A_i \}, \quad H_i(x_{-i}) = \{ y_i \in X_i | (y_i, x_{-i}) \in B_i \}.
\]

By condition (2), \(GcoH(x) \subset F(x) \) for all \(x \in X \). Further, by condition (1), for any \(x \in X \), there exists \(y \in X \) such that \(x \in \text{int} H(y) \). Thus, by theorem 3.1, there exists \(x^* \in X \) such that \(x^* \in F(x^*) \), i.e.,

\[
\bigcap_{i=1}^{n} A_i \neq \emptyset.
\]

Next, we study a Ky Fan-type Minimax Inequality on Hadamard manifolds. First, we define the strongly geodesic concave functions on Hadamard manifolds.

Definition 3.1 — Let \(K \subset M \) be strongly geodesic convex subset and \(o \) be any given point in \(M \). A function \(f : K \rightarrow R \) is called strongly geodesic concave if,
for any $x_i \in K$, $t_i \geq 0$, $i = 1, \cdots, n$ with $\sum_{i=1}^{n} t_i = 1$, we have

\[f \left(\exp_o \left(\sum_{i=1}^{n} t_i \exp_o^{-1} x_i \right) \right) \geq \sum_{i=1}^{n} t_i f(x_i); \]

f is called strongly geodesic quasi-concave if, for any $x_i \in K$, $t_i \geq 0$, $i = 1, \cdots, n$ with $\sum_{i=1}^{n} t_i = 1$, we have

\[f \left(\exp_o \left(\sum_{i=1}^{n} t_i \exp_o^{-1} x_i \right) \right) \geq \min_{i \in \{1, \cdots, n\}} \{ f(x_i) \}. \]

Theorem 3.4 — Let X be a nonempty, compact and strongly geodesic convex subset of a Hadamard manifold M, and let $f : X \times X \rightarrow \mathbb{R}$ be a real-valued function on $X \times X$ such that

1. for each $y \in X$, $x \rightarrow f(x, y)$ is lower semicontinuous on X;
2. for each $x \in X$, $y \rightarrow f(x, y)$ is strongly geodesic quasi-concave on X;
3. $f(x, x) \leq 0$ for all $x \in X$.

Then there exists $x^* \in X$ such that $f(x^*, y) \leq 0$ for all $y \in X$.

Proof: We define the set-valued mapping $A : X \rightrightarrows X$ by

\[F(x) = \{ y \in X | f(x, y) > 0 \}. \]

Suppose the contrary, then, for any $x \in X$, there exists $y \in X$ such that $y \in F(x)$, i.e., $F(x) \neq \emptyset$ for any $x \in X$. By condition (1), $F^{-1}(y)$ is open in X for all $y \in X$. By condition (2), $F(x)$ is strongly geodesic convex. Hence, by corollary 3.2, there exists $x^* \in X$ such that $x^* \in F(x^*)$, i.e., $f(x^*, x^*) > 0$, which contradict the fact $f(x, x) \leq 0$ for all $x \in X$. This completes the proof.

4. **Application to Games**

Next we shall use the new results to prove some new existence theorems of Nash equilibrium points on Hadamard manifolds.
Consider the \(n\)-person non-cooperative game \(\Gamma\{I, X_i, f_i\}\) on Hadamard manifolds. Assume that

1. \(I = \{1, \cdots, n\}\) is the set of players;
2. for each \(i \in I\), the nonempty set \(X_i\) is the strategy set of \(i\)th player;
3. for each \(i \in I\), \(f_i : \prod_{i \in I} X_i \rightarrow \mathbb{R}\) is the payoff function of \(i\)th player.

We shall note \(X_{-i} = \prod_{j \in I \setminus \{i\}} X_j\), \(x_{-i} = (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_n) \in X_{-i}\), \(x = (x_i, x_{-i}) \in X\). \(x^* = (x^*_i, x^*_{-i}) \in X\) is called a Nash equilibrium point if, for each \(i \in I\),

\[
f_i(x^*_i, x^*_{-i}) = \max_{u_i \in X_i} f_i(u_i, x^*_{-i}).
\]

Theorem 4.1 — Consider the \(n\)-person non-cooperative game \(\Gamma\{I, X_i, f_i\}\) on Hadamard manifolds satisfying the following conditions:

1. for each \(i \in I\), \(X_i\) is a nonempty, compact and strongly geodesic convex subset of a Hadamard manifold \(M_i\);
2. for each \(i \in I\), \(f_i\) is upper semicontinuous on \(X\);
3. for each \(i \in I\) and each fixed \(u_i \in X_i\), \(f_i(u_i, \cdot)\) is lower semicontinuous on \(X_{-i}\);
4. for each fixed \(u_{-i} \in X_{-i}\), \(f_i(\cdot, u_{-i})\) is strongly geodesic quasi-concave on \(X_i\).

Then there exists at least one Nash equilibrium point \(x^*\).

Proof: We define the set-valued mapping \(A(x) = \prod_{i \in I} A_i(x)\), where

\[
A_i(x) = \{y_i \in X_i | f_i(x_i, x_{-i}) < f_i(y_i, x_{-i})\}, \forall x \in X.
\]

By condition (2,3), \(A_i^{-1}(y_i) = \{x \in X | f_i(x_i, x_{-i}) < f_i(y_i, x_{-i})\}\) is open in \(X\) for each \(i \in I\), then \(A^{-1}(y) = \bigcap_{i \in I} A_i^{-1}(y_i)\) is open in \(X\) for all \(y \in X\).
Suppose that there exists \(x \in X \) such that \(x \in GcoA(x) \), then there exist \(o \in M, y^j \in A(x), j = 1, \cdots, m \) and \(t_j \geq 0, j = 1, \cdots, m \) with \(\sum_{j=1}^{m} t_j = 1 \) such that \(x = \exp_o \left(\sum_{j=1}^{m} t_j \exp^{-1} y^j \right) \). Since, for each fixed \(u_{-i} \in X \), \(f_i(\cdot, u_{-i}) \) is strongly geodesic quasi-concave on \(X_i \), then

\[
f_i(x_i, x_{-i}) = f_i \left(\exp_o \left(\sum_{j=1}^{m} t_j \exp^{-1} y^j_i \right), x_{-i} \right) \geq \min_{j \in \{1, \cdots, m\}} f_i(y^j_i, x_{-i}),
\]

which contradict the fact that \(y^j \in A(x) \) for all \(j = 1, \cdots, m \), i.e.,

\[
f_i(x_i, x_{-i}) < f_i(y^j_i, x_{-i}), \ \forall j = 1, \cdots, m.
\]

By corollary 3.4, there exists \(x^* \in X \) such that \(A(x^*) = \emptyset \), i.e., \(f_i(x_i^*, x_{-i}^*) \geq f_i(u_i, x_{-i}^*) \) for all \(u_i \in X_i \) and for each \(i \in I \).

Theorem 4.2 — Consider the \(n \)-person non-cooperative game \(\Gamma \{ I, X_i, f_i \} \) on Hadamard manifolds satisfying the following conditions:

1. for each \(i \in I \), \(X_i \) is a nonempty, compact and strongly geodesic convex subset of a Hadamard manifold \(M_i \);
2. for each \(i \in I \), \(\sum_{i=1}^{n} f_i \) is upper semicontinuous on \(X \);
3. for each \(y \in X \), \(x \mapsto \sum_{i=1}^{n} f_i(y_i, x_{-i}) \) is lower semicontinuous on \(X \);
4. for each \(x \in X \), \(y \mapsto \sum_{i=1}^{n} f_i(y_i, x_{-i}) \) is strongly geodesic quasi-concave on \(X \).

Then there exists at least one Nash equilibrium point \(x^* \).

Proof: We define the function \(\varphi : X \times X \rightarrow \mathbb{R} \), where

\[
\varphi(x, y) = \sum_{i=1}^{n} [f_i(y_i, x_{-i}) - f_i(x_i, x_{-i})], \ \forall y = (y_i, y_{-i}), x = (x_i, x_{-i}) \in X.
\]

By condition (2–4), we can check that

(i) for each \(y \in X \), \(x \mapsto \varphi(x, y) \) is lower semicontinuous on \(X \);
(ii) for each \(x \in X, \) \(y \rightarrow \varphi(x, y) \) is strongly geodesic quasi-concave on \(X; \)

(iii) \(\varphi(x, x) \leq 0 \) for all \(x \in X. \)

By theorem 3.4, there exists \(x^* \in X \) such that \(\varphi(x^*, y) \leq 0 \) for all \(y \in X. \) For each \(i \in I \) and any \(u_i \in X_i, \) let \(y = (u_i, x^*_{-i}) \in X, \) then

\[
\varphi(x^*, y) = f_i(u_i, x^*_{-i}) - f_i(x^*, x^*_{-i}) \leq 0,
\]

\[
f_i(x^*_i, x^*_{-i}) = \max_{u_i \in X_i} f_i(u_i, x^*_{-i}).
\]

5. Conclusion

In this paper, we study the generalized Browder-type fixed point theorem on Hadamard manifolds, which can be regarded as a generalization of the Browder-type fixed point theorem for the set-valued mapping on an Euclidean space to a Hadamard manifold. As applications, maximal element theorems, section theorems, a Ky Fan-type Minimax Inequality and existence theorems of Nash equilibrium for non-cooperative games on Hadamard manifolds are established.

References

